高一數(shù)學(xué)教學(xué)計劃7篇
時間過得太快,讓人猝不及防,我們的教學(xué)工作又將翻開新的一頁,立即行動起來寫一份教學(xué)計劃吧。怎樣寫教學(xué)計劃才更能吸引眼球呢?下面是小編整理的高一數(shù)學(xué)教學(xué)計劃7篇,僅供參考,大家一起來看看吧。
高一數(shù)學(xué)教學(xué)計劃 篇1
本學(xué)期的措施及打算
1.一周學(xué)習(xí)早知道。明確目標(biāo)更能確定努力的方向。為了讓學(xué)生學(xué)習(xí)更有目的性,有效性和積極性,每周第一節(jié)課給出一周的教學(xué)進(jìn)度,學(xué)習(xí)目標(biāo)和過關(guān)要求。不僅老師要做到對所教內(nèi)容清楚明了,也要讓學(xué)生對所學(xué)內(nèi)容做到每周學(xué)習(xí)目標(biāo)清晰化。
2.落實“每周測試”過關(guān)制。周測內(nèi)容與一周學(xué)習(xí)目標(biāo)及一周的講授內(nèi)容緊密相連。未盡力而又沒有過關(guān)的學(xué)生將按事先說明的措施給予處罰。以便讓學(xué)生重視課堂學(xué)習(xí),重視平時作業(yè),重視一周的學(xué)習(xí)過程。做到讓學(xué)生每周學(xué)習(xí)過程精細(xì)化。
3.根據(jù)學(xué)生學(xué)力狀況進(jìn)行分層次的培優(yōu)補(bǔ)差。
三、教學(xué)進(jìn)度安排
周次學(xué)習(xí)內(nèi)容目標(biāo)要求
1必修4 第一章三角函數(shù):第1至3節(jié)周期,角的推廣及表示,弧度制及互化
2軍訓(xùn)
3第4節(jié):正弦函數(shù)單位圓,正弦函數(shù)定義,象限符號,誘導(dǎo)公式,五點法畫圖像,圖像及性質(zhì)。
4第5節(jié):余弦函數(shù),第6節(jié)正切函數(shù)余弦函數(shù)正切函數(shù)定義,象限符號,誘導(dǎo)公式,圖像及性質(zhì)
5第7節(jié): 的圖像,第8節(jié):同角的基本關(guān)系。圖像變換規(guī)律,同角三角函數(shù)的基本關(guān)系及其運(yùn)用。章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。
6第二章:平面向量:第1節(jié)至第2節(jié)向量,有向線段,向量的長及相等、平行、共線、單位向量等概念,向量的加減法運(yùn)算
7第3節(jié)至第5節(jié)數(shù)乘向量,基本定理,向量運(yùn)算的鞏固訓(xùn)練,平面向量的坐標(biāo)表示及運(yùn)算。數(shù)量積的應(yīng)用。
8第5節(jié)至第7節(jié)數(shù)量積的應(yīng)用及坐標(biāo)表示,向量應(yīng)用舉例。習(xí)題課,章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。
9第三章:三角恒等變換:第1節(jié)至第2節(jié)兩角和差的公式得推導(dǎo),記憶及靈活運(yùn)用,二倍角公式得來源及運(yùn)用。期中復(fù)習(xí)。
10期中考試期中復(fù)習(xí),期中考試。
11第三章第3節(jié):三角函數(shù)的簡單應(yīng)用試卷講評改錯,簡單應(yīng)用,三角恒等變換的'綜合習(xí)題課,練習(xí),章節(jié)復(fù)習(xí),必修4基本測試。
12“五。一”長假
13必修3第一章:統(tǒng)計。第1節(jié)至第5節(jié)統(tǒng)計的程序,統(tǒng)計圖,統(tǒng)計方案設(shè)計,普查與抽樣,抽樣方法,分層抽樣與系統(tǒng)抽樣,花統(tǒng)計圖表及讀統(tǒng)計圖表,數(shù)字特征:平均數(shù),中位數(shù),眾數(shù),級差,方差的意義及計算分析,
14第6節(jié)至第9節(jié)樣本對總本的估計及相應(yīng)的數(shù)字特征的計算分析,統(tǒng)計實踐活動,變量的相關(guān)性及例題分析,最小二乘估計。章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。
15第二章:算法初步:第1節(jié)至第3節(jié)基本思想,基本結(jié)構(gòu)及設(shè)計,排序問題。
16第4節(jié):幾種基本語句條件語句,循環(huán)語句,復(fù)習(xí)三角函數(shù)的基本內(nèi)容,章節(jié)復(fù)習(xí),三角函數(shù)與算法初步過關(guān)測試。
17第三章:概率:第1節(jié)至第2節(jié)頻率,概率,古典概率,概率計算公式。
18第2節(jié)至第3節(jié)建概率模型,互斥事件,習(xí)題課,章節(jié)復(fù)習(xí),章節(jié)過關(guān)測試。
19期末復(fù)習(xí)
20期末復(fù)習(xí),期末考試
高一數(shù)學(xué)教學(xué)計劃 篇2
教材教法分析
本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課。該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化。教材通過一個實際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識的探究過程中。同時,通過對《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點間的距離》和選修2—1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用。由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系。
學(xué)情分析
一方面學(xué)生通過對空間幾何體:柱、錐、臺、球的學(xué)習(xí),處理了空間中點、線、面的關(guān)系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力。另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認(rèn)識,因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想。這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ)。
教學(xué)目標(biāo)
1、知識與技能
、偻ㄟ^具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性
、诹私饪臻g直角坐標(biāo)系,掌握空間點的坐標(biāo)的'確定方法和過程
③感受類比思想在探究新知識過程中的作用
2、過程與方法
、俳Y(jié)合具體問題引入,誘導(dǎo)學(xué)生探究
、陬惐葘W(xué)習(xí),循序漸進(jìn)
3、情感態(tài)度與價值觀
通過用類比的數(shù)學(xué)思想方法探究新知識,使學(xué)生感受新舊知識的聯(lián)系和研究事物從低維到高維的一般方法。通過實際問題的引入和解決,讓學(xué)生體會數(shù)學(xué)的實踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間。
教學(xué)重點
本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點確立為“空間直角坐標(biāo)系的理解”。
教學(xué)難點
“通過建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點的坐標(biāo)”。
先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會用坐標(biāo)刻畫平面內(nèi)任意點的位置的方法,進(jìn)而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出“第三根軸”的建立,進(jìn)而感受逐步發(fā)展得到“空間直角坐標(biāo)系”的建立,再逐步掌握利用坐標(biāo)表示空間任意點的位置?偟脕碚f,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論。
高一數(shù)學(xué)教學(xué)計劃 篇3
一、學(xué)情分析
這節(jié)課是在學(xué)生已經(jīng)學(xué)過的二維的平面直角坐標(biāo)系的基礎(chǔ)上的推廣,是以后學(xué)習(xí)空間向量等內(nèi)容的基礎(chǔ)。
二、教學(xué)目標(biāo)
1. 讓學(xué)生經(jīng)歷用類比的數(shù)學(xué)思想方法探索空間直角坐標(biāo)系的建立方法,進(jìn)一步體會數(shù)學(xué)概念、方法產(chǎn)生和發(fā)展的過程,學(xué)會科學(xué)的思維方法。
2. 理解空間直角坐標(biāo)系與點的坐標(biāo)的意義,掌握由空間直角坐標(biāo)系內(nèi)的點確定其坐標(biāo)或由坐標(biāo)確定其在空間直角坐標(biāo)系內(nèi)的點,認(rèn)識空間直角坐標(biāo)系中的點與坐標(biāo)的關(guān)系。
3. 進(jìn)一步培養(yǎng)學(xué)生的空間想象能力與確定性思維能力。
三、教學(xué)重點:在空間直角坐標(biāo)系中點的坐標(biāo)的確定。
四、教學(xué)難點:通過建立空間直角坐標(biāo)系利用點的坐標(biāo)來確定點在空間內(nèi)的位置
五、教學(xué)過程
(一)、問題情景
1. 確定一個點在一條直線上的`位置的方法。
2. 確定一個點在一個平面內(nèi)的位置的方法。
3. 如何確定一個點在三維空間內(nèi)的位置?
例:如圖,在房間(立體空間)內(nèi)如何確定一個同學(xué)的頭所在位置?
在學(xué)生思考討論的基礎(chǔ)上,教師明確:確定點在直線上,通過數(shù)軸需要一個數(shù);確定點在平面內(nèi),通過平面直角坐標(biāo)系需要兩個數(shù)。那么,要確定點在空間內(nèi),應(yīng)該需要幾個數(shù)呢?通過類比聯(lián)想,容易知道需要三個數(shù)。要確定同學(xué)的頭的位置,知道同學(xué)的頭到地面的距離、到相鄰的兩個墻面的距離即可。
(此時學(xué)生只是意識到需要三個數(shù),還不能從坐標(biāo)的角度去思考,因此,教師在這兒要重點引導(dǎo))
教師明晰:在地面上建立直角坐標(biāo)系xOy,則地面上任一點的位置只須利用x,y就可確定。為了確定不在地面內(nèi)的電燈的位置,須要用第三個數(shù)表示物體離地面的高度,即需第三個坐標(biāo)z.因此,只要知道電燈到地面的距離、到相鄰的兩個墻面的距離即可。例如,若這個電燈在平面xOy上的射影的兩個坐標(biāo)分別為4和5,到地面的距離為3,則可以用有序數(shù)組(4,5,3)確定這個電燈的位置(如圖26-3)。
這樣,仿照初中平面直角坐標(biāo)系,就建立了空間直角坐標(biāo)系O-xyz,從而確定了空間點的位置。
(二)、建立模型
1. 在前面研究的基礎(chǔ)上,先由學(xué)生對空間直角坐標(biāo)系予以抽象概括,然后由教師給出準(zhǔn)確的定義。
從空間某一個定點O引三條互相垂直且有相同單位長度的數(shù)軸,這樣就建立了空間直角坐標(biāo)系O-xyz,點O叫作坐標(biāo)原點,x軸、y軸、z軸叫作坐標(biāo)軸,這三條坐標(biāo)軸中每兩條確定一個坐標(biāo)平面,分別稱為xOy平面,yOz平面,zOx平面。
教師進(jìn)一步明確:
(1)在空間直角坐標(biāo)系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個坐標(biāo)系為右手坐標(biāo)系,課本中建立的坐標(biāo)系都是右手坐標(biāo)系。
(2)將空間直角坐標(biāo)系O-xyz畫在紙上時,x軸與y軸、x軸與z軸成135,而y軸垂直于z軸,y軸和z軸的單位長度相等,但x軸上的單位長度等于y軸和z軸上的單位長度的 ,這樣,三條軸上的單位長度直觀上大致相等。
2. 空間直角坐標(biāo)系O-xyz中點的坐標(biāo)。
思考:在空間直角坐標(biāo)系中,空間任意一點A與有序數(shù)組(x,y,z)有什么樣的對應(yīng)關(guān)系?
在學(xué)生充分討論思考之后,教師明確:
(1)過點A作三個平面分別垂直于x軸,y軸,z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,這樣,對空間任意點A,就定義了一個有序數(shù)組(x,y,z)。
(2)反之,對任意一個有序數(shù)組(x,y,z),按照剛才作圖的相反順序,在坐標(biāo)軸上分別作出點P,Q,R,使它們在x軸、y軸、z軸上的坐標(biāo)分別是x,y,z,再分別過這些點作垂直于各自所在的坐標(biāo)軸的平面,這三個平面的交點就是所求的點A.
這樣,在空間直角坐標(biāo)系中,空間任意一點A與有序數(shù)組(x,y,z)之間就建立了一種一一對應(yīng)關(guān)系:A (x,y,z)。
教師進(jìn)一步指出:空間直角坐標(biāo)系O-xyz中任意點A的坐標(biāo)的概念
對于空間任意點A,作點A在三條坐標(biāo)軸上的射影,即經(jīng)過點A作三個平面分別垂直于x軸、y軸和z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,我們把有序數(shù)組(x,y,z)叫作點A的坐標(biāo),記為A(x,y,z)。
(三)、例 題 與 練 習(xí)
1. 課本135頁例1.
注意:在分析中緊扣坐標(biāo)定義,強(qiáng)調(diào)三個步驟,第一步從原點出發(fā)沿x軸正方向移動5個單位,第二步沿與y軸平行的方向向右移動4個單位,第三步沿與z軸平行的方向向上移動6個單位(如圖26-5)。
2. 課本135頁例2
探究: (1)在空間直角坐標(biāo)系中,坐標(biāo)平面xOy,xOz,yOz上點的坐標(biāo)有什么特點?
(2)在空間直角坐標(biāo)系中,x軸、y軸、z軸上點的坐標(biāo)有什么特點?
解:(1)xOy平面、xOz平面、yOz平面內(nèi)的點的坐標(biāo)分別形如(x,y,0),(x,0,z),(0,y,z)。
(2)x軸、y軸、z軸上點的坐標(biāo)分別形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知長方體ABCD-ABCD的邊長AB=12,AD=8,AA=5,以這個長方體的頂點A為坐標(biāo)原點,射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個長方體各個頂點的坐標(biāo)。
注意:此題可以由學(xué)生口答,教師點評。
解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。
討論:若以C點為原點,以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角坐標(biāo)系,那么各頂點的坐標(biāo)又是怎樣的呢?
得出結(jié)論:建立不同的坐標(biāo)系,所得的同一點的坐標(biāo)也不同。
[練 習(xí)]
1. 在空間直角坐標(biāo)系中,畫出下列各點:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。
2. 已知:長方體ABCD-ABCD的邊長AB=12,AD=8,AA=7,以這個長方體的頂點B為坐標(biāo)原點,射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個長方體各個頂點的坐標(biāo)。
3. 寫出坐標(biāo)平面yOz上yOz平分線上的點的坐標(biāo)滿足的條件。
(四)、拓展延伸
分別寫出點(1,1,1)關(guān)于各坐標(biāo)軸和各個坐標(biāo)平面對稱的點的坐標(biāo)。
六、評價設(shè)計
1、 練習(xí) : 課本P136. 1、2、3
2、 課堂作業(yè): 課本P138. 1、2
高一數(shù)學(xué)教學(xué)計劃 篇4
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點)
必修5第一章:解三角形;重點是正弦定理與余弦定理;難點是正弦定理與余弦定理的應(yīng)用;第二章:數(shù)列;重點是等差數(shù)列與等比數(shù)列的前n項的和;難點是等差數(shù)列與等比數(shù)列前n項的和與應(yīng)用;第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式;難點是二元一次不等式(組)與簡單的線性規(guī)劃問題及應(yīng)用;
必修2第一章:空間幾何體;重點是空間幾何體的三視圖和直觀圖及表面積與體積;難點是空間幾何體的三視圖;第二章:點、直線、平面之間的位置關(guān)系;重點與難點都是直線與平面平行及垂直的判定及其性質(zhì);第三章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當(dāng)?shù)闹本方程求解題目;第四章:圓與方程;重點是圓的方程及直線與圓的位置關(guān)系;難點是直線與圓的位置關(guān)系;
二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)
較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識水平與基本學(xué)習(xí)方法比較扎實,大部分的學(xué)生對學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。
三、教學(xué)目的要求
1.通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關(guān)的實際問題。
2.通過日常生活中的實例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項公式與前n項和的公式,能用有關(guān)的知識解決相應(yīng)的問題。
3.理解不等式(組)對于刻畫不等關(guān)系的`意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。
4.幾何學(xué)研究現(xiàn)實世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計算是認(rèn)識和探索幾何圖形及其性質(zhì)的方法。先從對空間幾何體的整體觀察入手,認(rèn)識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認(rèn)識和理解空間中點、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語言表述有關(guān)平行、垂直的性質(zhì)與判定,對某些結(jié)論進(jìn)行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運(yùn)用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施
積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時對學(xué)生的思想進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。
五、教學(xué)進(jìn)度
周次 課、章、節(jié) 教學(xué)內(nèi)容 備注
1 1.1,1.2 解三角形
2 1.2 解三角形
3 2.1,2.2 數(shù)列的概念與簡單表示法,等差數(shù)列
4 2.3 等差數(shù)列的前n項和
5 2.4,2.5 等比數(shù)列及前n項和
6 2.5 考試
7 3.1,3.2 不等關(guān)系與不等式,一元二次不等式及其解法
8 3.3,3.4 二元一次不等式(組)與簡單線性規(guī)劃問題,基本不等式
9 考試,復(fù)習(xí)
10 期中考試
11 1.1,1.2 空間幾何體的結(jié)構(gòu),三視圖,直觀圖
12 1.3 空間幾何體的表面積與體積
13 2.1,2.2 空間點、直線、平面的位置關(guān)系,直線、平面平行的判定及其性質(zhì)
14 2.3 直線、平面的判定及其性質(zhì)
15 3.1,3.2 直線的傾斜角與斜率,直線方程
16 3.3 直線的交點坐標(biāo)與距離公式
17 4.1,4.2 圓的方程,直線、圓的位置關(guān)系
18 4.3 空間直角坐標(biāo)系
19 復(fù)習(xí)
20 考試
高一數(shù)學(xué)教學(xué)計劃 篇5
教學(xué)計劃可以幫助教師理清教學(xué)思路,提高課堂效率。
●教學(xué)目標(biāo)
(一)教學(xué)知識點
1.了解全集的意義.
2.理解補(bǔ)集的概念.
(二)能力訓(xùn)練要求
1.通過概念教學(xué),提高學(xué)生邏輯思維能力.
2.通過教學(xué),提高學(xué)生分析、解決問題能力.
(三)德育滲透目標(biāo) 滲透相對的觀點.
●教學(xué)重點 補(bǔ)集的概念.
●教學(xué)難點
補(bǔ)集的有關(guān)運(yùn)算.
●教學(xué)方法 發(fā)現(xiàn)式教學(xué)法 通過引入實例,進(jìn)而對實例的分析,發(fā)現(xiàn)尋找其一般結(jié)果,歸納其普遍規(guī)律.
●教具準(zhǔn)備
第一張:(記作1.2.2 A)
●教學(xué)過程 Ⅰ.復(fù)習(xí)回顧
1.集合的子集、真子集如何尋求?其個數(shù)分別是多少? 2.兩個集合相等應(yīng)滿足的條件是什么?
、.講授新課 [師]事物都是相對的,集合中的部分元素與集合之間關(guān)系就是部分與整體的關(guān)系.
請同學(xué)們由下面的'例子回答問題: 投影片:(1.2.2 A)
[生]集合B就是集合S中除去集合A之后余下來的集合. 即為如圖陰影部分
由此借助上圖總結(jié)規(guī)律如下: 投影片:(1.2.2 B)
Ⅳ.課時小結(jié)
1.能熟練求解一個給定集合的補(bǔ)集.
2.注意一些特殊結(jié)論在以后解題中的應(yīng)用. Ⅴ.課后作業(yè)
高一數(shù)學(xué)教學(xué)計劃 篇6
一、學(xué)生狀況分析
學(xué)生整體水平一般,成績以中等為主,中上不多,后進(jìn)生也有一些。幾個班中,從上課一周來看,學(xué)生的學(xué)習(xí)積極性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識不太牢固,上課效率不是很高。
二、教材分析
使用北師大版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)》,教材在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修2有四章(空間幾何體;點線平面間的位置關(guān)系;直線與方程;圓與方程)。
三、教學(xué)任務(wù)
本期授課內(nèi)容為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。
四、教學(xué)質(zhì)量目標(biāo)
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。
2.提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高學(xué)生提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,體會數(shù)學(xué)的'美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進(jìn)目標(biāo)達(dá)成的重點工作
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要內(nèi)容,堅持“抓兩頭、帶中間、整體推進(jìn)”,使每個學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。
教學(xué)方法及推進(jìn)措施
六、相關(guān)措施:
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
。1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項突破難點.所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。.
。3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
。4)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備
。5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
。6)重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
。7)重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難
與戰(zhàn)勝困難的信心。
(8)合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實例出
發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
。9)加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力和解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成
善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
。10)抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵
和基本方法,注重提高學(xué)生分析問題的能力。
。11)自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不同的教材內(nèi)容選擇不同教法,
提倡創(chuàng)新教學(xué)方法,把學(xué)生被動接受知識轉(zhuǎn)化主動學(xué)習(xí)知識。
七、教學(xué)進(jìn)度安排:
高一數(shù)學(xué)教學(xué)計劃 篇7
教材分析:
解不等式是不等式學(xué)習(xí)的主要內(nèi)容,是中學(xué)數(shù)學(xué)的一項重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎(chǔ),初中已經(jīng)學(xué)習(xí),二次不等式是重點,也是學(xué)習(xí)的難點。作為數(shù)學(xué)重要的工具及方法,經(jīng)常運(yùn)用于其它數(shù)學(xué)知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數(shù)形結(jié)合”方法,這種方法將二次函數(shù),二次方程結(jié)合為一體,并且借助“圖形”直觀地得出答案,充分展現(xiàn)了數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,另外也展現(xiàn)了“數(shù)形結(jié)合”思想方法的巨大魅力。然而,個人認(rèn)為,還有一種更加自然的方法,將二次不等式轉(zhuǎn)化為一次不等式組的方法,這種方法思路自然,同時也體現(xiàn)了“轉(zhuǎn)化”思想,難度也不大,應(yīng)該更加符合學(xué)生的實際思維及思路。
學(xué)情分析:
初中已經(jīng)學(xué)習(xí)了一元一次不等式(或組)的解法,積累了一定的解題經(jīng)驗。同時,對于二次方程,二次函數(shù)等相關(guān)知識學(xué)生均較為熟悉。然而,根據(jù)自己的調(diào)查,一少部分學(xué)生對于一元一次不等式及不等式組的解法都表現(xiàn)出一定程度的陌生。進(jìn)而,可以先從復(fù)習(xí)簡單的一次不等式及不等式組入手加以展開教學(xué)。
學(xué)生心理方面,學(xué)習(xí)積極性較高,對數(shù)學(xué)的學(xué)習(xí)興趣、信心也比較理想,有較強(qiáng)的學(xué)習(xí)動機(jī)——考上大學(xué),盡管是外在的誘因。
教學(xué)目標(biāo):
、僦R與技能
熟練掌握一元一次不等式及不等式組的解法,初步學(xué)會兩種方法求出一元二次不等式的解集
、谶^程與方法
經(jīng)歷不等式求解的探索及發(fā)現(xiàn)過程,體驗“數(shù)形結(jié)合及轉(zhuǎn)化”思想的魅力,掌握方法,學(xué)會學(xué)習(xí)
③情感、態(tài)度及價值觀
在上述過程中,體驗成功,激發(fā)了對數(shù)學(xué)學(xué)習(xí)的興趣及信心,發(fā)展了對數(shù)學(xué)學(xué)習(xí)的積極情感,增強(qiáng)了學(xué)習(xí)的內(nèi)在動機(jī)
教學(xué)重點:
一元二次不等式的解法
教學(xué)難點:
解法的探索及發(fā)現(xiàn),關(guān)鍵在于“識圖能力”
反思:
今天的課堂,這個難點突破欠缺力量,主要緣于自己備課時對難點考慮不到位,進(jìn)而缺乏必要的設(shè)計。在課堂上,就難點特別與個別差生進(jìn)行了交流,并且給予了幫助及指導(dǎo)。在指導(dǎo)過程中,我找出了他們困難的二個環(huán)節(jié):
首先,對平面曲線上點的橫坐標(biāo)與縱座標(biāo)之間的對應(yīng)關(guān)系表現(xiàn)陌生,進(jìn)而對它們的取值變化情況感到費(fèi)解。
其次,是差生的思維能力尚處于“經(jīng)驗思維”,辯證思維能力薄弱,進(jìn)而對運(yùn)動中的點的坐標(biāo)取值范圍只能是“一籌莫展”。
在了解情況后,遵循“最近發(fā)展區(qū)”原理,以問題串的形式給差生提供必要的幫助后,差生也順利度過了難關(guān)。由此足以說明,從知識的角度而言,“沒有教不好的學(xué)生,只有不會教的教師:這句話還是相當(dāng)有道理的。當(dāng)然,這一切的前提就是對學(xué)生“學(xué)情”的掌握。美國著名心理學(xué)家、結(jié)構(gòu)主義學(xué)派的代表人布魯納也有類似觀點:給我一打健康的兒童,我可以教會他任何任何學(xué)科任何年齡段的任何知識。
教學(xué)程序:
一、復(fù)習(xí)一元一次不等式及不等式組的解法
以題組形式設(shè)計習(xí)題
、2x+3>7
、诓坏仁浇M
③ax>b
二、創(chuàng)設(shè)二次不等式的`生活背景實例,引入課題
采用課本上的實例,有關(guān)網(wǎng)絡(luò)收費(fèi)問題
三、一元二次不等式的解法探索
(1)
在教師的啟發(fā)引導(dǎo)下,從特殊到一般,學(xué)生經(jīng)歷“轉(zhuǎn)化”方法的探索及發(fā)現(xiàn)過程。
由于這種方法課本沒有給出,進(jìn)而課堂上不作為重點,重在引導(dǎo)學(xué)生自行歸納、體驗及總結(jié)“轉(zhuǎn)化”思想,最后以課外思考題的形式設(shè)計相應(yīng)習(xí)題。
(2)
采取啟發(fā)式教學(xué),師生共同經(jīng)歷“數(shù)形結(jié)合”方法的探索及發(fā)現(xiàn)過程,引導(dǎo)學(xué)生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學(xué)生的語言組織并完成,并撰寫在黑板上,教師沒有作任何干涉。我一直認(rèn)為,只有學(xué)生自己親身體驗的知識才是有意義的知識,盡管這些知識不完整,語言或許不規(guī)范,思維或許不嚴(yán)密。
之后,從特殊到一般,研究一般的二元一次不等式的解法。由于經(jīng)歷了前面的解題過程,這個環(huán)節(jié)全部放手讓學(xué)生完成,鼓勵他們通過或獨立或合作的方式解決學(xué)習(xí)任務(wù),完成課本上的表格。
反思:根據(jù)課堂反饋,二個班級大約有70%的同學(xué)能夠勝任這個任務(wù)。于是,在大多數(shù)學(xué)生完成的基礎(chǔ)上,我又進(jìn)行了一次講解,特別加強(qiáng)了對“識圖”環(huán)節(jié)的講解力度,力求突破難點。
四、練習(xí)環(huán)節(jié)
可以說,即使到了高三,仍然有不少同學(xué)對于一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學(xué)習(xí)類型看,這節(jié)課顯然屬于技能課,對于技能的學(xué)習(xí)及掌握,關(guān)鍵是強(qiáng)化練習(xí),“力求熟能生巧”,達(dá)到自動化的水平。
課本上,配置了不少練習(xí)題。對于練習(xí),我采取多種方式,或叫學(xué)生上黑板板書,借助學(xué)生練習(xí)規(guī)范解題格式;或者口答,說解題思路及答案;或者下面獨立練習(xí)。
五、課堂小結(jié)
知識,思想、方法及感悟等
六、課后作業(yè)
、僮鳂I(yè)設(shè)計:分成A、B兩層,難度不一,讓學(xué)生自主選擇,均來源于課本上的A組或B組
、谡n外思考題:
1比較兩種解題方法即“轉(zhuǎn)化及數(shù)形結(jié)合”方法的優(yōu)劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值范圍
變式一:戓將R改為空集,此時結(jié)論如何
變式二:仿上,自己改編條件,并解之。
反思:課外思考題的設(shè)計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優(yōu)生服務(wù),發(fā)展學(xué)生的思維能力,激發(fā)他們的學(xué)習(xí)興趣。同時,加強(qiáng)變式教學(xué),可以充分拓展習(xí)題的潛在價值,期望實現(xiàn)“舉一反三”的目標(biāo)。
【高一數(shù)學(xué)教學(xué)計劃】相關(guān)文章:
高一學(xué)期數(shù)學(xué)教學(xué)計劃08-09
【熱】高一數(shù)學(xué)教學(xué)計劃12-23