高一數學教案大全范文優(yōu)秀
作為一位杰出的教職工,常常要根據教學需要編寫教案,借助教案可以讓教學工作更科學化。那么優(yōu)秀的教案是什么樣的呢?以下是小編收集整理的高一數學教案大全范文優(yōu)秀,僅供參考,大家一起來看看吧。
高一數學教案大全范文優(yōu)秀1
教學目標:
、僬莆諏岛瘮档男再|。
、趹脤岛瘮档男再|可以解決:對數的大小比較,求復合函數的定義域、值 域及單調性。
、 注重函數思想、等價轉化、分類討論等思想的滲透,提高解題能力。
教學重點與難點:對數函數的性質的應用。
教學過程設計:
、睆土曁釂枺簩岛瘮档母拍罴靶再|。
、查_始正課
1 比較數的大小
例 1 比較下列各組數的大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
、苐og0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數有何特征?
生:這兩個對數底相等。
師:那么對于兩個底相等的對數如何比大小?
生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數函數的單調性取決于底的大小:當0
調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞
增,所以loga5.1
板書:
解:Ⅰ)當0
∵5.1<5.9 loga5.1="">loga5.9
、)當a>1時,函數y=logax在(0,+∞)上是增函數,∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學們觀察一下⑵中這三個對數有何特征?
生:這三個對數底、真數都不相等。
師:那么對于這三個對數如何比大。
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數值的大小常用方法:
、贅嬙鞂岛瘮,直接利用對數函
數 的單調性比大小
、诮栌谩爸虚g量”間接比大小
、劾脤
函數圖象的位置關系來比大小。
2 函數的定義域, 值 域及單調性。
例 2 ⑴求函數y=的定義域。
、平獠坏仁絣og0.2(x2+2x-3)>log0.2(3x+3)
師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要使函數有意義。若函數中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數中有對數的形式,則真數大于零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)
生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個不等式。
分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,再根據對數函數的單調性求解。
師:請你寫一下這道題的解題過程。
生:<板書>
解: x2+2x-3>0 x<-3 x="">1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解為:1
例 3 求下列函數的值域和單調區(qū)間。
、舮=log0.5(x- x2)
、苰=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數的的值域和單調區(qū)間要用及復合函數的思想方法。
下面請同學們來解⑴。
生:此函數可看作是由y= log0.5u, u= x- x2復合而成。
板書:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函數y=log0.5(x- x2)的單調遞減區(qū)間(0,0.5],單調遞 增區(qū)間[0.5,1)
注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則
函數都不存在,性質就無從談起。
師:在⑴的基礎上,我們一起來解
、。請同學們觀察一下⑴與⑵有什
么區(qū)別?
生:
、诺牡讛凳浅V
、频牡讛凳亲帜浮
師:那么⑵如何來解?
生:只要對a進行分類討論,做法與⑴類似。
板書:略。
、承〗Y
這堂課主要講解如何應用對數函數的性質解決一些問題,希望能
通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。
⒋作業(yè)
、沤獠坏仁
①lg(x2-3x-4)≥lg(2x+10);
、趌oga(x2-x)≥loga(x+1),(a為常數)
、埔阎瘮祔=loga(x2-2x),(a>0,a≠1)
、偾笏腵單調區(qū)間;
、诋0
、且阎瘮祔=loga (a>0, b>0, 且 a≠1)
、偾笏亩x域;
、谟懻撍钠媾夹;
③討論它的單調性。
、纫阎瘮祔=loga(ax-1) (a>0,a≠1)
、偾笏亩x域;
、诋攛為何值時,函數值大于1;
、塾懻撍
單調性。
5、課堂教學設計說明
這節(jié)課是安排為習題課,主要利用對數函數的性質解決一些問題,整個一堂課分兩個部分:一 。比較數的大小,想通過這一部分的練習,培養(yǎng)同學們構造函數的思想和分類討論、數形結合的思想。二。函數的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數的定義域。因為學生在求函數的值域和單調區(qū)間時,往往不考慮函數的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。
高一數學教案大全范文優(yōu)秀2
教學目標
。1)正確理解充分條件、必要條件和充要條件的概念;
(2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學生的邏輯思維能力及歸納總結能力;
(4)在充要條件的教學中,培養(yǎng)等價轉化思想.
教學建議
(一)教材分析
1.知識結構
首先給出推斷符號“”,并引出的意義,在此基礎上講述了充要條件的初步知識.
2.重點難點分析
本節(jié)的重點與難點是關于充要條件的判斷.
。1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數學概念,主要用來區(qū)分命題的條件和結論之間的因果關系.
。2)在判斷條件和結論之間的因果關系中應該:
、偈紫确智鍡l件是什么,結論是什么;
、谌缓髧L試用條件推結論,再嘗試用結論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說明其不成立;
、圩詈笤僦赋鰲l件是結論的什么條件.
。3)在討論條件和條件的關系時,要注意:
、偃,但,則是的充分但不必要條件;
、谌,但,則是的必要但不充分條件;
、廴,且,則是的充要條件;
、苋,且,則是的充要條件;
、萑,且,則是的既不充分也不必要條件.
。4)若條件以集合的形式出現,結論以集合的形式出現,則借助集合知識,有助于充要條件的理解和判斷.
、偃簦瑒t是的充分條件;
顯然,要使元素,只需就夠了.類似地還有:
、谌,則是的必要條件;
③若,則是的充要條件;
、苋,且,則是的既不必要也不充分條件.
。5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當我們證明某一命題有困難時,可以證明該命題的逆否命題成立,從而得出原命題成立.
。ǘ┙谭ńㄗh
1.學習充分條件、必要條件和充要條件知識,要注意與前面有關邏輯初步知識內容相聯系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡單命題,也可以是不能判斷真假的語句,也可以是含有邏輯聯結詞或“若則”形式的復合命題.
2.由于這節(jié)課概念性、理論性較強,一般的教學使學生感到枯燥乏味,為此,激發(fā)學生的學習興趣是關鍵.教學中始終要注意以學生為主,讓學生在自我思考、相互交流中去結概念“下定義”,去體會概念的本質屬性.
3.由于“充要條件”與命題的真假、命題的條件與結論的相互關系緊密相關,為此,教學時可以從判斷命題的真假入手,來分析命題的條件對于結論來說,是否充分,從而引入“充分條件”的概念,進而引入“必要條件”的概念.
4.教材中對“充分條件”、“必要條件”的定義沒有作過多的解釋說明,為了讓學生能理解定義的.合理性,在教學過程中,教師可以從一些熟悉的命題的條件與結論之間的關系來認識“充分條件”的概念,從互為逆否命題的等價性來引出“必要條件”的概念.
教學設計示例
充要條件
教學目標:
。1)正確理解充分條件、必要條件和充要條件的概念;
(2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學生的邏輯思維能力及歸納總結能力;
。4)在充要條件的教學中,培養(yǎng)等價轉化思想.
教學重點難點:
關于充要條件的判斷
教學用具:
幻燈機或實物投影儀
教學過程設計
1.復習引入
練習:判斷下列命題是真命題還是假命題(用幻燈投影):
(1)若,則;
。2)若,則;
。3)全等三角形的面積相等;
。4)對角線互相垂直的四邊形是菱形;
。5)若,則;
。6)若方程有兩個不等的實數解,則.
(學生口答,教師板書.)
(1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.
置疑:對于命題“若,則”,有時是真命題,有時是假命題.如何判斷其真假的?
答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.
對于命題“若,則”,如果由經過推理能推出,也就是說,如果成立,那么一定成立.換句話說,只要有條件就能充分地保證結論的成立,這時我們稱條件是成立的充分條件,記作.
2.講授新課
。ò鍟浞謼l件的定義.)
一般地,如果已知,那么我們就說是成立的充分條件.
提問:請用充分條件來敘述上述(1)、(3)、(6)的條件與結論之間的關系.
。▽W生口答)
。1)“,”是“”成立的充分條件;
。2)“三角形全等”是“三角形面積相等”成立的充分條件;
。3)“方程的有兩個不等的實數解”是“”成立的充分條件.
從另一個角度看,如果成立,那么其逆否命題也成立,即如果沒有,也就沒有,亦即是成立的必須要有的條件,也就是必要條件.
。ò鍟匾獥l件的定義.)
提出問題:用“充分條件”和“必要條件”來敘述上述6個命題.
。▽W生口答).
。1)因為,所以是的充分條件,是的必要條件;
(2)因為,所以是的必要條件,是的充分條件;
。3)因為“兩三角形全等”“兩三角形面積相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;
。4)因為“四邊形的對角線互相垂直”“四邊形是菱形”,所以“四邊形的對角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對角線互相垂直”的充分條件;
。5)因為,所以是的必要條件,是的充分條件;
。6)因為“方程的有兩個不等的實根”“”,而且“方程的有兩個不等的實根”“”,所以“方程的有兩個不等的實根”是“”充分條件,而且是必要條件.
總結:如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡稱充要條件,記作.
。ò鍟湟獥l件的定義.)
3.鞏固新課
例1(用投影儀投影.)
。▽W生活動,教師引導學生作出下面回答.)
、僖驗橛欣頂狄欢ㄊ菍崝,但實數不一定是有理數,所以是的充分非必要條件,是的必要非充分條件;
、谝欢芡瞥觯灰欢ㄍ瞥,所以是的充分非必要條件,是的必要非充分條件;
、邸⑹瞧鏀,那么一定是偶數;是偶數,、不一定都是奇數(可能都為偶數),所以是的充分非必要條件,是的必要非充分條件;
④表示或,所以是成立的必要非充分條件;
、萦山患亩x可知且是成立的充要條件;
、抻芍,所以是成立的充分非必要條件;
、哂芍,所以是,成立的必要非充分條件;
⑧易知“是4的倍數”是“是6的倍數”成立的既非充分又非必要條件;
。ㄍㄟ^對上述問題的交流、思辯,在爭論中得到了正確答案,并加深了對充分條件、必要條件的認識.)
例2已知是的充要條件,是的必要條件同時又是的充分條件,試與的關系.(投影)
解:由已知得,所以是的充分條件,或是的必要條件.
4.小結回授
今天我們學習了充分條件、必要條件和充要條件的概念,并學會了判斷條件A是B的什么條件,這為我們今后解決數學問題打下了等價轉化的基礎.
課內練習:課本(人教版,試驗修訂本,第一冊(上))第35頁練習l、2;第36頁練習l、2.
。ㄍㄟ^練習,檢查學生掌握情況,有針對性的進行講評.)
5.課外作業(yè):教材第36頁 習題1.8 1、2、3.
高一數學教案大全范文優(yōu)秀3
一、教材的地位和作用
本節(jié)課是 “空間幾何體的三視圖和直觀圖”的第一課時,主要內容是投影和三視圖,這部分知識是立體幾何的基礎之一,一方面它是對上一節(jié)空間幾何體結構特征的再一次強化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎和訓練學生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內容之一,常常結合給出的三視圖求給定幾何體的表面積或體積設置在選擇或填空中。同時,三視圖在工程建設、機械制造中有著廣泛應用,同時也為學生進入高一層學府學習有很大的幫助。所以在人們的日常生活中有著重要意義。
二、教學目標
。1) 知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進一步熟悉簡單幾何體的結構特征。
。2)過程與方法:通過直觀感知,操作確認,提高學生的空間想象能力、幾何直觀能力,培養(yǎng)學生的應用意識。
。3)情感、態(tài)度與價值觀:讓感受數學就在身邊,提高學生學習立體幾何的興趣,培養(yǎng)學生相互交流、相互合作的精神。
三、設計思路
本節(jié)課的主要任務是引導學生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復雜過程。直觀感知操作確認是新課程幾何課堂的一個突出特點,也是這節(jié)課的設計思路。通過大量的多媒體直觀,實物直觀使學生獲得了對三視圖的感性認識,通過學生的觀察思考,動手實踐,操作練習,實現認知從感性認識上升為理性認識。培養(yǎng)學生的空間想象能力,幾何直觀能力為學習立體幾何打下基礎。
教學的重點、難點
。ㄒ唬┲攸c:畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時應遵循的“長對正、高平齊、寬相等”的原則。
。ǘ╇y點:識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。
四、學生現實分析
本節(jié)首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學生具有這方面的直接經驗和基礎。投影和三視圖雖為高中新增內容,但學生在初中有一定基礎,在七年級上冊 “從不同方向看”的基礎上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進入高中后特別是再次學習和認識了柱、錐、臺等幾何體的概念后,學生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側視圖、俯視圖的概念。這些概念的變化也說明了學生年齡特點和思維差異。
五、教學方法
。1)教學方法及教學手段
針對本節(jié)課知識是由抽象到具體再到抽象、空間思維難度較大的特點,我采用的教法是直觀教學法、啟導發(fā)現法。
在教學中,通過創(chuàng)設問題情境,充分調動學生學習的積極性和主動性,并引導啟發(fā)學生動眼、動腦、動手、同時采用多媒體的教學手段,加強直觀性和啟發(fā)性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。
。2)學法指導
力爭在新課程要求的大背景下組織教學,為學生創(chuàng)設良好的`問題情境,留給學生充分的思考空間,在學生的辯證和討論前提下,發(fā)揮教師的概括和引領的作用。
六、教學過程
。ㄒ唬﹦(chuàng)設情境,引出課題
通過攝影作品及汽車設計圖紙引出問題
1、照相、繪畫之所以有空間視覺效果,主要處決于線條、明暗和色彩,其中對線條畫法的基本原理是一個幾何問題,我們需要學習這方面的知識。
2、在建筑、機械等工程中,需要用平面圖形反映空間幾何體的形狀和大小,在作圖技術上這也是一個幾何問題,你想知道這方面的基礎知識嗎?
設計意圖:通過攝影作品及汽車設計圖紙的展示引出問題1,2,從貼近生活的實例入手,給學生以視覺沖擊,引領學生進入本節(jié)課的內容。
引出課題:投影與三視圖
知識探究(一):中心投影與平行投影
光是直線傳播的,一個不透明物體在光的照射下,在物體后面的屏幕上會留下這個物體的影子,這種現象叫做投影。其中的光線叫做投影線,留下物體影子的屏幕叫做投影面。
思考1:不同的光源發(fā)出的光線是有差異的,其中燈泡發(fā)出的光線與手電筒發(fā)出的光線有什么
不同?
思考2:我們把光由一點向外散射形成的投影叫做中心投影,把在一束平行光線照射下形成的投影叫做平行投影,那么用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?
思考3:用燈泡照射一個與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關系?當物體與燈泡的距離發(fā)生變化時,影子的大小會有什么不同?
思考4:用手電筒照射一個與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關系?當物體與手電筒的距離發(fā)生變化化時,影子的大小會有變化嗎?
思考5:在平行投影中,投影線正對著投影面時叫做正投影,否則叫做斜投影、一個與投影面平行的平面圖形,在正投影和斜投影下的形狀、大小是否發(fā)生變化?
思考6:一個與投影面不平行的平面圖形,在正投影和斜投影下的形狀、大小是否發(fā)生變化? 師生活動:學生思考,討論,教師歸納總結。
設計意圖:講解投影,投影線,投影面,讓學生了解投影式如何形成的。通過六個思考層層深入,學生在思考討論的過程中總結出投影的分類及每種投影的特點。
知識探究(二):柱、錐、臺、球的三視圖
把一個空間幾何體投影到一個平面上,可以獲得一個平面圖形。但只有一個平面圖形難以把握幾何體的全貌,因此我們需要從多個角度進行投影,這樣就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側面和上面。
從不同的角度看建筑
問題1:要很好地描繪這幢房子,需要從哪些方向去看?
問題2:如果要建造房子,你是工程師,需要給施工員提供哪幾種圖紙?
設計意圖:通過觀察大樓的圖片,提出問題1,2,這種設計更易于讓學生接受,說明數學與生活密不可分。
給出三視圖的含義:
(1)光線從幾何體的前面向后面正投影得到的投影圖,叫做幾何體的正視圖;
(2)光線從幾何體的左面向右面正投影得到的投影圖,叫做幾何體的側視圖;
。3)光線從幾何體的上面向下面正投影得到的投影圖,叫做幾何體的俯視圖;
。4)幾何體的正視圖、側視圖、俯視圖統(tǒng)稱為幾何體的三視圖。
思考1 :正視圖、側視圖、俯視圖分別是從幾何體的哪三個角度觀察得到的幾何體的正投影圖?它們都是平面圖形還是空間圖形?
思考2 :如圖,設長方體的長、寬、高分別為a、b、c ,那么其三視圖分別是什么?
一個幾何體的正視圖和側視圖的高度一樣,俯視圖和正視圖的的長度一樣,側視圖和俯視圖的寬度一樣。
思考3 :圓柱、圓錐、圓臺的三視圖分別是什么?
思考4 :一般地,一個幾何體的正視圖、側視圖和俯視圖的長度、寬度和高度有什么關系? 師生活動:分小組討論,動手操作來完成思考題。
設計意圖:通過多媒體的動態(tài)演示,對學生的結論進行驗證,大概花15分鐘的時間來完成這部分的教學。學生自主歸納總結將本節(jié)課的重點化解。
長對正,高平齊,寬相等。
高一數學教案大全范文優(yōu)秀4
學習目標
1. 根據具體函數圖象,能夠借助計算器用二分法求相應方程的近似解;
2. 通過用二分法求方程的近似解,使學生體會函數零點與方程根之間的聯系,初步形成用函數觀點處理問題的意識。
舊知提示 (預習教材P89~ P91,找出疑惑之處)
復習1:什么叫零點?零點的等價性?零點存在性定理?
對于函數 ,我們把使 的實數x叫做函數 的零點。
方程 有實數根 函數 的圖象與x軸 函數 .
如果函數 在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有 ,那么,函數 在區(qū)間 內有零點。
復習2:一元二次方程求根公式? 三次方程? 四次方程?
合作探究
探究:有12個小球,質量均勻,只有一個是比別的球重的,你用天平稱幾次可以找出這個球的,要求次數越少越好。
解法:第一次,兩端各放 個球,低的那一端一定有重球;
第二次,兩端各放 個球,低的那一端一定有重球;
第三次,兩端各放 個球,如果平衡,剩下的就是重球,否則,低的就是重球。
思考:以上的方法其實這就是一種二分法的思想,采用類似的方法,如何求 的零點所在區(qū)間?如何找出這個零點?
新知:二分法的思想及步驟
對于在區(qū)間 上連續(xù)不斷且 0的函數 ,通過不斷的把函數的零點所在的'區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫二分法(bisection).
反思: 給定精度,用二分法求函數 的零點近似值的步驟如何呢?
、俅_定區(qū)間 ,驗證 ,給定精度
、谇髤^(qū)間 的中點 ;[]
③計算 : 若 ,則 就是函數的零點; 若 ,則令 (此時零點 ); 若 ,則令 (此時零點 );
、芘袛嗍欠襁_到精度即若 ,則得到零點零點值a(或b);否則重復步驟②~④.
典型例題
例1 借助計算器或計算機,利用二分法求方程 的近似解。
練1. 求方程 的解的個數及其大致所在區(qū)間。
練2.求函數 的一個正數零點(精確到 )
零點所在區(qū)間 中點函數值符號 區(qū)間長度
練3. 用二分法求 的近似值。
課堂小結
、 二分法的概念;
②二分法步驟;
、鄱址ㄋ枷。
知識拓展
高次多項式方程公式解的探索史料
在十六世紀,已找到了三次和四次函數的求根公式,但對于高于4次的函數,類似的努力卻一直沒有成功,到了十九世紀,根據阿貝爾(Abel)和伽羅瓦(Galois)的研究,人們認識到高于4次的代數方程不存在求根公式,亦即,不存在用四則運算及根號表示的一般的公式解。同時,即使對于3次和4次的代數方程,其公式解的表示也相當復雜,一般來講并不適宜作具體計算。因此對于高次多項式函數及其它的一些函數,有必要尋求其零點近似解的方法,這是一個在計算數學中十分重要的課題。
學習評價
1. 若函數 在區(qū)間 上為減函數,則 在 上( ).
A. 至少有一個零點 B. 只有一個零點
C. 沒有零點 D. 至多有一個零點
2. 下列函數圖象與 軸均有交點,其中不能用二分法求函數零點近似值的是().
3. 函數 的零點所在區(qū)間為( ).
A. B. C. D.
4. 用二分法求方程 在區(qū)間[2,3]內的實根,由計算器可算得 , , ,那么下一個有根區(qū)間為 .
課后作業(yè)
1.若函數f(x)是奇函數,且有三個零點x1、x2、x3,則x1+x2+x3的值為()
A.-1 B.0 C.3 D.不確定
2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,則f(x)=0在[a,b]內()
A.至少有一實數根 B.至多有一實數根
C.沒有實數根 D.有惟一實數根
3.設函數f(x)=13x-lnx(x0)則y=f(x)()
A.在區(qū)間1e,1,(1,e)內均有零點 B.在區(qū)間1e,1, (1,e)內均無零點
C.在區(qū)間1e,1內有零點;在區(qū)間(1,e)內無零點[]
D.在區(qū)間1e,1內無零點,在區(qū)間(1,e)內有零點
4.函數f(x)=ex+x-2的零點所在的一個區(qū)間是()
A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
5.若方程x2-3x+mx+m=0的。兩根均在(0,+)內,則m的取值范圍是()
A.m1 B.01 D.0
6.函數f(x)=(x-1)ln(x-2)x-3的零點有()
A.0個 B.1個 C.2個 D.3個
7.函數y=3x-1x2的一個零點是()
A.-1 B.1 C.(-1,0) D.(1,0)
8.函數f(x)=ax2+bx+c,若f(1)0,f(2)0,則f(x)在(1,2)上零點的個數為( )
A.至多有一個 B.有一個或兩個 C.有且僅有一個 D.一個也沒有
9.根據表格中的數據,可以判定方程ex-x-2=0的一個根所在的區(qū)間為()
x -1 0 1 2 3
ex 0.37 1 2.72 7.39 20.09
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
10.求函數y=x3-2x2-x+2的零點,并畫出它的簡圖。
【高一數學教案優(yōu)秀】相關文章:
高一數學教案優(yōu)秀09-05
(精華)高一數學教案優(yōu)秀5篇08-28
高一數學教案11-05
高一數學教案11-08
【熱門】高一數學教案11-26
【薦】高一數學教案11-27
【熱】高一數學教案12-05
高一數學教案【薦】12-02
【精】高一數學教案12-01
高一數學教案(精品)10-14