av午夜福利在线观看_国产精品一区二区白浆_8乄8X国产精品一区二区_国产精品国产AV大片

七年級數(shù)學(xué)教案

時間:2022-11-19 17:16:43 七年級數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

七年級數(shù)學(xué)教案(匯編15篇)

  作為一位杰出的教職工,編寫教案是必不可少的,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。我們該怎么去寫教案呢?以下是小編幫大家整理的七年級數(shù)學(xué)教案,歡迎大家分享。

七年級數(shù)學(xué)教案(匯編15篇)

七年級數(shù)學(xué)教案1

  教學(xué)目的:

  (一)知識點目標(biāo):

  1.了解正數(shù)和負數(shù)是怎樣產(chǎn)生的。

  2.知道什么是正數(shù)和負數(shù)。

  3.理解數(shù)0表示的量的意義。

  (二)能力訓(xùn)練目標(biāo):

  1.體會數(shù)學(xué)符號與對應(yīng)的思想,用正、負數(shù)表示具有相反意義的量的符號化方法。

  2.會用正、負數(shù)表示具有相反意義的量。

  (三)情感與價值觀要求:

  通過師生合作,聯(lián)系實際,激發(fā)學(xué)生學(xué)好數(shù)學(xué)的熱情。

  教學(xué)重點:

  知道什么是正數(shù)和負數(shù),理解數(shù)0表示的量的.意義。

  教學(xué)難點:

  理解負數(shù),數(shù)0表示的量的意義。

  教學(xué)方法:

  師生互動與教師講解相結(jié)合。

  教具準(zhǔn)備:

  地圖冊(中國地形圖)。

  教學(xué)過程:

  引入新課:

  1.活動:由兩組各派兩名同學(xué)進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快、?

  內(nèi)容:老師說出指令:

  向前兩步,向后兩步;

  向前一步,向后三步;

  向前兩步,向后一步;

  向前四步,向后兩步。

  如果學(xué)生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。

  [師]其實,在我們的生活中,運用這樣的符號的地方很多,這節(jié)課,我們就來學(xué)習(xí)這種帶有特殊符號、表示具有實際意義的數(shù)-----正數(shù)和負數(shù)。

  講授新課:

  1.自然數(shù)的產(chǎn)生、分數(shù)的產(chǎn)生。

  2.章頭圖。問題見教材。讓學(xué)生思考-3~3℃、凈勝球數(shù)與排名順序、±0.5、-9的意義。

  3、正數(shù)、負數(shù)的定義:我們把以前學(xué)過的0以外的數(shù)叫做正數(shù),在這些數(shù)的前面帶有“一”時叫做負數(shù)。根據(jù)需要有時在正數(shù)前面也加上“十”(正號)表示正數(shù)。

  舉例說明:3、2、0.5、等是正數(shù)(也可加上“十”)

  -3、-2、-0.5、-等是負數(shù)。

  4、數(shù)0既不是正,也不是負數(shù),0是正數(shù)和負數(shù)的分界。

  0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。

  5、讓學(xué)生舉例說明正、負數(shù)在實際中的應(yīng)用。展示圖片(又見教材P5圖1.1-2-3)讓學(xué)生觀察地形圖上的標(biāo)注和記錄支出、存入信息的本地X銀行的存折,說出你知道的信息。

  鞏固提高:練習(xí):課本P5練習(xí)

  課時小結(jié):這節(jié)課我們學(xué)習(xí)了哪些知識?你能說一說嗎?

  課后作業(yè):課本P7習(xí)題1.1的第1、2、4、5題。

  活動與探究:在一次數(shù)學(xué)測驗中,X班的平均分為85分,把高于平均分的高出部分記為正數(shù)。

  (1)美美得95分,應(yīng)記為多少?

  (2)多多被記作一12分,他實際得分是多少?

七年級數(shù)學(xué)教案2

  學(xué)習(xí)目標(biāo):

  1、引導(dǎo)學(xué)生正確區(qū)分“線段、射線、直線”,掌握其表示方法,理解并能運用相關(guān)性質(zhì)、公理。

  2、了解線段中點的概念,能借助刻度尺、圓規(guī)等畫圖工具畫一條線段等于已知線段。

  3、引領(lǐng)學(xué)生在感受美妙多變的圖形世界中,培養(yǎng)他們的觀察、分析、比較、探究等能力。

  重點與難點:了解線段中點的概念,能畫一條線段等于已知線段。發(fā)展學(xué)生有條理的思考,并能正確地表述。

  學(xué)習(xí)過程:

  一、課前預(yù)習(xí)導(dǎo)學(xué)

  1、如圖,點a、b、c、d在直線ab上,則圖中能用字母表示的共有條線段,有條射線,有條直線。

  2、從a到b地有①、②、③三條路可以走,每條路長分別為:,則第條路最短,另兩條路的長短關(guān)系是。

  第1題

  第2題

  3、如圖,若是中點,是中點,

  (1)若,_________;

 。2)若,_________。

  二、課堂學(xué)習(xí)1、議一議:

 。1)、在平面內(nèi)畫一個點,過這個點畫直線,能畫多少條?

  (2)、要在墻上釘牢一根木條,至少要用幾個釘子?為什么?

 。3)、如果平面內(nèi)有兩個點,過這兩個點畫直線,又能畫多少條?

  總結(jié):“過兩點有______,并且____ ”

  思考:過平面上三點中的每兩點畫直線,可畫多少條?

  2、做一做:已知兩點a、b

  (1)畫線段ab(連接ab)

 。2)延長線段ab到點c,使bc=ab

  注意:我們把上圖中的點b叫做線段ac的。

  3、想一想:(1)如果點b是線段ac的.中點,那么線段ab、bc、ac之間有怎樣的數(shù)量關(guān)系?與同學(xué)交流。

 。2)如何用符號語言表述中點的概念?

  總結(jié):如果點b是線段ac的中點,那么;

  如果,那么b是線段ac的中點。

  4、知識運用:

  例1、如圖,線段ab=8cm,c是ab的中點,點d在cb上,db=1.5cm.求線段cd的長度。

  練習(xí):1、如圖ab=8cm,點c是ab的中點,

  點d是cb的中點,則ad=____cm

  2、如圖,下列說法,不能判斷點c是線段ab的中點的是( )

  a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab

  3、已知線段ab=8cm,點c是線段ab上任意一點,點m,n分別是線段ac與線段bc的中點,求線段mn的長。

  三、課堂檢測1.下列說法中,正確的是()

  a.射線oa和射線ao表示同一條射線;b.延長直線ab;

  c.經(jīng)過兩點有一條直線,并且只有一條直線;d.如果ac=bc,那么點c是線段ab的中點.

  2.如果要在墻上固定一根木條,你認為至少要釘子()

  a.1根b.2根c.3根d.4根

  3.如圖,若是中點,是中點,

 。1)若,,_________;(2)若,_________。

  4.如圖在平面內(nèi)有a、b、c、d四點,按要求畫圖。

 。1)畫直線ab、射線bc、線段bd

 。2)連結(jié)ac交bd于點o

 。3)畫射線cd并反向延長射線cd,

 。4)連結(jié)ad并延長至點e,使ad=de。

  四、課后作業(yè)

  1、下列說法中正確的是()

  a、連結(jié)兩點的線段叫做兩點之間的距離b、直線沒有端點,射線至少有一個端點

  c、經(jīng)過平面內(nèi)兩點有且只有一條直線d、運動場上的300m賽跑,表示起點和終點之間的距離是300米

  2、如圖,b是線段ad上一點,c是線段bd的中點,ad=10,bc=3,求線段cd、ab的長度

  3、如圖,線段ad=8,ab=cd=3,e、f分別是ab、cd的中點,求線段ef的長。

  4、已知線段mn=7,點p在直線mn上,且mp=3,則np= 。

  5、一條直線上有a,b,c三點,其中ab=4cm,bc=3cm,若o是線段ac的中點,求線段ob的長度。

七年級數(shù)學(xué)教案3

  一、教學(xué)目標(biāo)

  1、知識目標(biāo):掌握數(shù)軸三要素,會畫數(shù)軸。

  2、能力目標(biāo):能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;

  3、情感目標(biāo):向?qū)W生滲透數(shù)形結(jié)合的思想。

  二、教學(xué)重難點

  教學(xué)重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。

  教學(xué)難點:有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。

  三、教法

  主要采用啟發(fā)式教學(xué),引導(dǎo)學(xué)生自主探索去觀察、比較、交流。

  四、教學(xué)過程

  (一)創(chuàng)設(shè)情境激活思維

  1.學(xué)生觀看鐘祥二中相關(guān)背景視頻

  意圖:吸引學(xué)生注意力,激發(fā)學(xué)生自豪感。

  2.聯(lián)系實際,提出問題。

  問題1:鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。

  師生活動:學(xué)生思考解決問題的方法,學(xué)生代表畫圖演示。

  學(xué)生畫圖后提問:

  1.馬路用什么幾何圖形代表?(直線)

  2.文中相關(guān)地點用什么代表?(直線上的點)

  3.學(xué)校大門起什么作用?(基準(zhǔn)點、參照物)

  4.你是如何確定問題中各地點的位置的?(方向和距離)

  設(shè)計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學(xué)抽象。

  問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學(xué)校大門的相對位置關(guān)系呢?

  師生活動:

  學(xué)生思考后回答解決方法,學(xué)生代表畫圖。

  學(xué)生畫圖后提問:

  1.0代表什么?

  2.數(shù)的符號的實際意義是什么?

  3.-75表示什么?100表示什么?

  設(shè)計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎(chǔ)。

  問題3:生活中常見的溫度計,你能描述一下它的結(jié)構(gòu)嗎?

  設(shè)計意圖:借助生活中的常用工具,說明正數(shù)和負數(shù)的作用,引導(dǎo)學(xué)生用三要素表達,為定義數(shù)軸的概念提供直觀基礎(chǔ)。

  問題4:你能說說上述2個實例的.共同點嗎?

  設(shè)計意圖:進一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎(chǔ)。

  (二)自主學(xué)習(xí)探究新知

  學(xué)生活動:帶著以下問題自學(xué)課本第8頁:

  1.什么樣的直線叫數(shù)軸?它具備什么條件。

  2.如何畫數(shù)軸?

  3.根據(jù)上述實例的經(jīng)驗,“原點”起什么作用?

  4.你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?

  師生活動:

  學(xué)生自學(xué)完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。

  設(shè)計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學(xué)們的頭腦中留下更深刻的印象,同時得到數(shù)軸的定義。

  至此,學(xué)生已會畫數(shù)軸,師生共同歸納總結(jié)(板書)

 、贁(shù)軸的定義。

 、跀(shù)軸三要素。

  練習(xí):(媒體展示)

  1.判斷下列圖形是否是數(shù)軸。

  2.口答:數(shù)軸上各點表示的數(shù)。

  3.在數(shù)軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。

  (三)小組合作交流展示

  問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?

  數(shù)軸上表示3的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?設(shè)a是一個正數(shù),對表示a的點和-a的點進行同樣的討論。

  設(shè)計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學(xué)生的抽象概括能力。

  (四)歸納總結(jié)反思提高

  師生共同回顧本節(jié)課所學(xué)主要內(nèi)容,回答以下問題:

  1.什么是數(shù)軸?

  2.數(shù)軸的“三要素”各指什么?

  3.數(shù)軸的畫法。

  設(shè)計意圖:梳理本節(jié)課內(nèi)容,掌握本節(jié)課的核心――數(shù)軸“三要素”。

  (五)目標(biāo)檢測設(shè)計

  1.下列命題正確的是()

  A.數(shù)軸上的點都表示整數(shù)。

  B.數(shù)軸上表示4與-4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。

  C.數(shù)軸包括原點與正方向兩個要素。

  D.數(shù)軸上的點只能表示正數(shù)和零。

  2.畫數(shù)軸,在數(shù)軸上標(biāo)出-5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。

  3.畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有_______個。4.在數(shù)軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是_______。

  五、板書

  1.數(shù)軸的定義。

  2.數(shù)軸的三要素(圖)。

  3.數(shù)軸的畫法。

  4.性質(zhì)。

  六、課后反思

  附:活動單

  活動一:畫一畫

  鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。

  思考:如何簡明地用數(shù)表示這些地理位置與學(xué)校大門的相對位置關(guān)系?

  活動二:讀一讀

  帶著以下問題閱讀教科書P8頁:

  1.什么樣的直線叫數(shù)軸?

  定義:規(guī)定了_______、_______、_______的直線叫數(shù)軸。

  數(shù)軸的三要素:_______、_______、_______。

  2.畫數(shù)軸的步驟是什么?

  3.“原點”起什么作用?_______

  4.你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?

  練習(xí):

  1.畫一條數(shù)軸

  2.在你畫好的數(shù)軸上表示下列有理數(shù):1.5,-2,-2.5,2,2.5,0,-1.5

  活動三:議一議

  小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?

  歸納:一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的_______邊,與原點的距離是_______個單位長度;表示數(shù)-a的點在原點的_______邊,與原點的距離是_______個單位長度.

  練習(xí):

  1.數(shù)軸上表示-3的點在原點的_______側(cè),距原點的距離是_______;表示6的點在原點的_______側(cè),距原點的距離是_______;兩點之間的距離為_______個單位長度。

  2.距離原點距離為5個單位的點表示的數(shù)是_______。

  3.在數(shù)軸上,把表示3的點沿著數(shù)軸負方向移動5個單位長度,到達點B,則點B表示的數(shù)是_______。

  附:目標(biāo)檢測

  1.下列命題正確的是( )

  A.數(shù)軸上的點都表示整數(shù)。

  B.數(shù)軸上表示4與-4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。

  C.數(shù)軸包括原點與正方向兩個要素。

  D.數(shù)軸上的點只能表示正數(shù)和零。

  2.畫數(shù)軸,在數(shù)軸上標(biāo)出-5和+5之間的所有整數(shù).列舉到原點的距離小于3的所有整數(shù)。

  3.畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有_______個。

  4.在數(shù)軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數(shù)軸上點A表示的數(shù)是_______。

七年級數(shù)學(xué)教案4

  設(shè)計說明

  1.游戲?qū),激發(fā)興趣。

  “世界通過游戲展現(xiàn)在孩子面前,人的創(chuàng)造才能也常常在游戲中表現(xiàn)出來,沒有游戲也就沒有充分的智力發(fā)展!庇糜螒?qū)胄抡n,可使數(shù)學(xué)知識在游戲中愉快地、自然地被學(xué)生所接受和理解。上課伊始,設(shè)計了老師說時間,學(xué)生用動作表示時間的游戲,這樣不僅喚起了學(xué)生對時間的回憶,同時也激發(fā)了學(xué)生學(xué)習(xí)新課的興趣。

  2.直觀演示與動手操作相結(jié)合。

  重視直觀演示和動手操作,是發(fā)展學(xué)生思維,培養(yǎng)學(xué)生數(shù)學(xué)能力的有效途徑之一。本設(shè)計通過課件的直觀演示,以及學(xué)生動手操作,使學(xué)生理解時間與時刻的意義及12時計時法與24時計時法的聯(lián)系。通過例題進行比較,使學(xué)生明確用24時計時法表示時間比較簡明、方便,經(jīng)歷由直觀到抽象的過程,滲透比較的數(shù)學(xué)思想。

  3.注重從日常生活的各個場景入手,加深對24時計時法的理解和掌握。

  24時計時法在生活中有著廣泛的應(yīng)用,與人們的日常生活緊密聯(lián)系。學(xué)生學(xué)習(xí)這部分知識有著重要的現(xiàn)實意義。整節(jié)課以“一天”為主線,貫穿始終。出示主題圖展示生活中的一天;通過春節(jié)晚會倒計時,了解一天的開始;探究一天有多少個小時。從生活中梳理出數(shù)學(xué)知識,既能加深學(xué)生對知識的理解,又能幫助他們提高學(xué)以致用的能力。

  課前準(zhǔn)備

  教師準(zhǔn)備ppt課件時鐘模型

  學(xué)生準(zhǔn)備時鐘模型

  教學(xué)過程

  ⊙創(chuàng)設(shè)情境,導(dǎo)入新課

  1.做游戲,認時間。

  師:老師和大家做個游戲,老師說一個時間,大家不用口述,用動作告訴老師這時你在做什么,看誰表演的好。

 。1)老師先說一個時刻:中午12時,用動作示范一下。

 。2)老師報出下列時刻:凌晨3時、早上6時、上午11時30分、下午4時、晚上9時。(教師邊板書邊提問)

  2.導(dǎo)入。

  師:剛才我們說的是生活中常用的表示時刻的方法,叫做12時計時法。如果同學(xué)們用12時計時法表示時刻,那么應(yīng)加“上午、中午、下午、晚上或凌晨”等限制詞。有沒有一種不用加文字說明的計時方法呢?今天我們就學(xué)習(xí)一種新的計時法——24時計時法。(板書課題)

  設(shè)計意圖:通過游戲,激活學(xué)生的生活經(jīng)驗,分析、歸納出12時計時法的特點,并理解12時計時法在現(xiàn)實生活中的作用。了解12時計時法在實際運用時要有限制詞,從而激發(fā)學(xué)生的認知沖突,尋找表示時間的更為簡便的計時方法——24時計時法,引入新知,激發(fā)學(xué)生學(xué)習(xí)新知的興趣。

  ⊙經(jīng)歷過程,體驗感知

  1.體驗生活中的.“一天”。

  師:請同學(xué)們看大屏幕(課件出示教材82頁主題圖),引導(dǎo)學(xué)生說出在主題圖中獲得的信息。

 。▽W(xué)生匯報小女孩在一天中的作息時間)

  2.認識一天的開始——0時。

  師:大家知道一天是從什么時刻開始的嗎?(學(xué)生發(fā)表意見,教師不作答復(fù))

  師:一天的開始到底是什么時刻呢?還是讓我們一起來看一段錄像吧!這是春節(jié)聯(lián)歡晚會上大家在一起迎接新年第一天開始的情境。(課件播放倒計時的錄像)

  師:新年的第一天開始了,鐘面上是幾時?(12時)是什么時候的12時?(夜里12時)

  師:到了夜里12時,就表示這一天結(jié)束了,同時又表示新的一天開始了。作為新的一天的開始,我們一般又把夜里12時說成0時。

  師:0時我們通常在做什么呢?(睡覺)現(xiàn)在知道一天的開始是什么時刻了嗎?一起說說看。(0時)

  3.運用課件創(chuàng)設(shè)情境,感受一天的經(jīng)過。

  師:一天的時間有多長呢?讓我們來感受一下吧!大家可以一邊看,一邊隨著畫面和音樂表演。(課件演示)現(xiàn)在是0時,在睡夢中我們開始了新的一天。

  師:(鐘面顯示早晨6時45分)天亮了,太陽升起來了,現(xiàn)在是什么時候?小女孩在做什么?

  師:(鐘面顯示上午10時15分)現(xiàn)在是什么時候?小女孩在做什么?

  師:(鐘面顯示中午12時)時間真快,現(xiàn)在是什么時候?到吃午飯的時間了。

  師:(鐘面顯示下午3時30分)小女孩和同學(xué)們在跳繩。

  師:(鐘面顯示下午6時)現(xiàn)在是什么時候?到吃晚飯的時間了。

  師:(鐘面顯示晚上7時25分)現(xiàn)在是什么時候?小女孩在做什么?

  師:大家在睡夢中,時間又不知不覺到了什么時候?(夜里12時)到了夜里12時,這一天就結(jié)束了,新的一天又開始了!

七年級數(shù)學(xué)教案5

  一、教學(xué)目標(biāo)

  【知識與技能】

  了解數(shù)軸的概念,能用數(shù)軸上的點準(zhǔn)確地表示有理數(shù)。

  【過程與方法】

  通過觀察與實際操作,理解有理數(shù)與數(shù)軸上的點的對應(yīng)關(guān)系,體會數(shù)形結(jié)合的思想。

  【情感、態(tài)度與價值觀】

  在數(shù)與形結(jié)合的過程中,體會數(shù)學(xué)學(xué)習(xí)的樂趣。

  二、教學(xué)重難點

  【教學(xué)重點】

  數(shù)軸的三要素,用數(shù)軸上的點表示有理數(shù)。

  【教學(xué)難點】

  數(shù)形結(jié)合的思想方法。

  三、教學(xué)過程

  (一)引入新課

  提出問題:通過實例溫度計上數(shù)字的意義,引出數(shù)學(xué)中也有像溫度計一樣可以用來表示數(shù)的.軸,它就是我們今天學(xué)習(xí)的數(shù)軸。

  (二)探索新知

  學(xué)生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關(guān)系:

  提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對位置呢?

  學(xué)生活動:畫圖表示后提問。

  提問2:“0”代表什么?數(shù)的符號的實際意義是什么?對照體溫計進行解答。

  教師給出定義:在數(shù)學(xué)中,可以用一條直線上的點表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個點表示數(shù)0,代表原點;通常規(guī)定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。

  提問3:你是如何理解數(shù)軸三要素的?

  師生共同總結(jié):“原點”是數(shù)軸的“基準(zhǔn)”,表示0,是表示正數(shù)和負數(shù)的分界點,正方向是人為規(guī)定的,要依據(jù)實際問題選取合適的單位長度。

  (三)課堂練習(xí)

  如圖,寫出數(shù)軸上點A,B,C,D,E表示的數(shù)。

  (四)小結(jié)作業(yè)

  提問:今天有什么收獲?

  引導(dǎo)學(xué)生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。

  課后作業(yè):

  課后練習(xí)題第二題;思考:到原點距離相等的兩個點有什么特點?

七年級數(shù)學(xué)教案6

  一元一次不等式組

  教學(xué)目標(biāo)

  1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題;

  2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力;

  3、體驗數(shù)學(xué)學(xué)習(xí)的樂趣,感受一元一次不等式組在解決實際問題中的.價值。

  教學(xué)難點

  正確分析實際問題中的不等關(guān)系,列出不等式組。

  知識重點

  建立不等式組解實際問題的數(shù)學(xué)模型。

  探究實際問題

  出示教科書第145頁例2(略)

  問:(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?

  (2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?

  (3)解決這個問題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?

  師生一起討論解決例2.

  歸納小結(jié)

  1、教科書146頁“歸納”(略).

  2、你覺得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?

  在討論或議論的基礎(chǔ)上老師揭示:

  步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。

七年級數(shù)學(xué)教案7

  一、教學(xué)內(nèi)容分析

  1。2有理數(shù)1。2。2數(shù)軸。這一節(jié)是初中數(shù)學(xué)中非常重要的內(nèi)容,從知識上講,數(shù)軸是數(shù)學(xué)學(xué)習(xí)和研究的重要工具,它主要應(yīng)用于絕對值概念的理解,有理數(shù)運算法則的推導(dǎo),及不等式的求解。同時,也是學(xué)習(xí)直角坐標(biāo)系的基礎(chǔ),從思想方法上講,數(shù)軸是數(shù)形結(jié)合的起點,而數(shù)形結(jié)合是學(xué)生理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的方法。日常生活中帶見的用溫度計度量溫度,已為學(xué)習(xí)數(shù)軸概念打下了一定的基礎(chǔ)。通過問題情境類比得到數(shù)軸的概念,是這節(jié)課的主要學(xué)習(xí)方法。同時,數(shù)軸又能將數(shù)的分類直觀的表現(xiàn)出來,是學(xué)生領(lǐng)悟分類思想的基礎(chǔ)。

  二、學(xué)生學(xué)習(xí)情況分析

  (1)知識掌握上,七年級的學(xué)生剛剛學(xué)習(xí)有理數(shù)中的正負數(shù),對正負數(shù)的概念理解不一定很深刻,許多學(xué)生容易造成知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;

 。2)學(xué)生學(xué)習(xí)本節(jié)課的知識障礙。學(xué)生對數(shù)軸概念和數(shù)軸的三要素,學(xué)生不易理解,容易造成畫圖中掉三落四的現(xiàn)象,所以教學(xué)中教師應(yīng)予以簡單明白、深入淺出的分析;

  (3)由于七年級學(xué)生的理解能力和思維特征和生理特征,學(xué)生的好動性,注意力容易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點,一方面要運用直觀生動的形象,一發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生的主動性。

  三、設(shè)計思想

  從學(xué)生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學(xué)的一個重要原則。小學(xué)里曾學(xué)過利用射線上的點來表示數(shù),為此我們可引導(dǎo)學(xué)生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念。教學(xué)中,數(shù)軸的三要素中的每一要素都要認真分析它的作用,使學(xué)生從直觀認識上升到理性認識。直線、數(shù)軸都是非常抽象的數(shù)學(xué)概念,當(dāng)然對初學(xué)者不宜講的過多,但適當(dāng)引導(dǎo)學(xué)生進行抽象的思維活動還是可行的。例如,向?qū)W生提問:在數(shù)軸上對應(yīng)一億萬分之一的點,你能畫出來嗎?它是不是存在等。

  四、教學(xué)目標(biāo)

 。ㄒ唬┲R與技能

  1、掌握數(shù)軸的三要素,能正確畫出數(shù)軸。

  2、能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù)。

 。ǘ┻^程與方法

  1、使學(xué)生受到把實際問題抽象成數(shù)學(xué)問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學(xué)的意識。

  2、對學(xué)生滲透數(shù)形結(jié)合的思想方法。

 。ㄈ┣楦、態(tài)度與價值觀

  1、使學(xué)生初步了解數(shù)學(xué)來源于實踐,反過來又服務(wù)于實踐的辯證唯物主義觀點。

  2、通過畫數(shù)軸,給學(xué)生以圖形美的教育,同時由于數(shù)形的結(jié)合,學(xué)生會得到和諧美的享受。

  五、教學(xué)重點及難點

  1、重點:正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù)。

  2、難點:有理數(shù)和數(shù)軸上的點的對應(yīng)關(guān)系。

  六、教學(xué)建議

  1、重點、難點分析

  本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù),并會比較有理數(shù)的大小。難點是正確理解有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。數(shù)軸的概念包含兩個內(nèi)容,一是數(shù)軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應(yīng)該明確的是,所有的有理數(shù)都可用數(shù)軸上的點表示,但數(shù)軸上的點所表示的數(shù)并不都是有理數(shù)。通過學(xué)習(xí),使學(xué)生初步掌握用數(shù)軸解決問題的方法,為今后充分利用“數(shù)軸”這個工具打下基礎(chǔ)。

  2、知識結(jié)構(gòu)

  有了數(shù)軸,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學(xué)問題的研究,數(shù)形結(jié)合是理解數(shù)學(xué)、學(xué)好數(shù)學(xué)的方法,本課知識要點如下:

  定義規(guī)定了原點、正方向、單位長度的直線叫數(shù)軸

  三要素原點正方向單位長度

  應(yīng)用數(shù)形結(jié)合

  七、學(xué)法引導(dǎo)

  1、教學(xué)方法:根據(jù)教師為主導(dǎo),學(xué)生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學(xué)方法。

  2、學(xué)生學(xué)法:動手畫數(shù)軸,動腦概括數(shù)軸的三要素,動手、動腦做練習(xí)。

  八、課時安排

  1課時

  九、教具學(xué)具準(zhǔn)備

  電腦、投影儀、三角板

  十、師生互動活動設(shè)計

  講授新課

 。ǔ鍪就队1)

  問題1:三個溫度計。其中一個溫度計的液面在0上2個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度。

  師:三個溫度計所表示的溫度是多少?

  生:2℃,—5℃,0℃。

  問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7。5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4。8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。(小組討論,交流合作,動手操作)

  師:我們能否用類似的圖形表示有理數(shù)呢?

  師:這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—數(shù)軸(板書課題)。

  師:與溫度計類似,我們也可以在一條直線上畫出刻度,標(biāo)上讀

  數(shù),用直線上的點表示正數(shù)、負數(shù)和零。具體方法如下

 。ㄟ呎f邊畫):

  1。畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的.都是正數(shù),也可偏向左邊)用這點表示0(相當(dāng)于溫度計上的0℃);

  2。規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當(dāng)于溫度計上0℃以上為正,0℃以下為負);

  3。選取適當(dāng)?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為—1,—2,—3,…

  師問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))

  讓學(xué)生觀察畫好的直線,思考以下問題:

 。ǔ鍪就队2)

 。1)原點表示什么數(shù)?

 。2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?

  (3)表示+2的點在什么位置?表示—1的點在什么位置?

 。4)原點向右0。5個單位長度的A點表示什么數(shù)?

  原點向左1。5個單位長度的B點表示什么數(shù)?

  根據(jù)老師畫圖的步驟,學(xué)生思考在一條水平的直線上都畫出什么?然后歸納出數(shù)軸的定義。

  師:在此基礎(chǔ)上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單

  位長度的直線叫做數(shù)軸。

  進而提問學(xué)生:在數(shù)軸上,已知一點P表示數(shù)—5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么P對應(yīng)的數(shù)是否還是—5?如果單位長度改變呢?如果直線的正方向改變呢?

  通過上述提問,向?qū)W生指出:數(shù)軸的三要素——原點、正方向和單位長度,缺一不可。

  【教法說明】通過“觀察—類比—思考—概括—表達”展現(xiàn)知識的形成是從感性認識上升到理性認識的過程,讓學(xué)生在獲取知識的過程中,領(lǐng)會數(shù)學(xué)思想和思維方法,并有意識地訓(xùn)練學(xué)生歸納概括和口頭表達能力。

  師生同步畫數(shù)軸,學(xué)生概括數(shù)軸三要素,師出示投影,生動手動腦練習(xí)

  嘗試反饋,鞏固練習(xí)

 。ǔ鍪就队3)。畫出數(shù)軸并表示下列有理數(shù):

  1、1。5,—2。2,—2。5,,,0。

  2。寫出數(shù)軸上點A,B,C,D,E所表示的數(shù):

  請大家回答下列問題:

 。ǔ鍪就队4)

 。1)有人說一條直線是一條數(shù)軸,對不對?為什么?

 。2)下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?

  【教法說明】此組練習(xí)的目的是鞏固數(shù)軸的概念。

  十一、小結(jié)

  本節(jié)課要求同學(xué)們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學(xué)們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究。

  十二、課后練習(xí)習(xí)題1。2第2題

  十三、教學(xué)反思

  1、數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學(xué)生易于體驗和接受,讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。

  2、教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。

  3、注意從學(xué)生的知識經(jīng)驗出發(fā),充分發(fā)揮學(xué)生的主體意識,讓學(xué)生主動參與學(xué)習(xí)活,并引導(dǎo)學(xué)生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學(xué)生自主探索的學(xué)習(xí)方法。

七年級數(shù)學(xué)教案8

  教學(xué)目標(biāo)

  1. 使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;

  2. 初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力.

  教學(xué)重點和難點

  重點:列代數(shù)式.

  難點:弄清楚語句中各數(shù)量的意義及相互關(guān)系.

  課堂教學(xué)過程設(shè)計

  一、從學(xué)生原有的認知結(jié)構(gòu)提出問題

  1?用代數(shù)式表示乙數(shù):(投影)

  (1)乙數(shù)比x大5;(x+5)

  (2)乙數(shù)比x的2倍小3;(2x-3)

  (3)乙數(shù)比x的倒數(shù)小7;( -7)

  (4)乙數(shù)比x大16%?((1+16%)x)

  (應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)

  2?在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問題一樣,這一點同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字敘述的一句話或計算關(guān)系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學(xué)習(xí)這個問題?

  二、講授新課

  例1 用代數(shù)式表示乙數(shù):

  (1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;

  (3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?

  分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)?

  解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為

  (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

  (本題應(yīng)由學(xué)生口答,教師板書完成)

  最后,教師需指出:第4小題的答案也可寫成x+16%x?

  例2 用代數(shù)式表示:

  (1)甲乙兩數(shù)和的2倍;

  (2)甲數(shù)的 與乙數(shù)的 的差;

  (3)甲乙兩數(shù)的平方和;

  (4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;

  (5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?

  分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式?

  解:設(shè)甲數(shù)為a,乙數(shù)為b,則

  (1)2(a+b); (2) a- b; (3)a2+b2;

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

  (本題應(yīng)由學(xué)生口答,教師板書完成)

  此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運算順序?

  例3 用代數(shù)式表示:

  (1)被3整除得n的數(shù);

  (2)被5除商m余2的數(shù)?

  分析本題時,可提出以下問題:

  (1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?

  (2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?

  解:(1)3n; (2)5m+2?

  (這個例子直接為以后讓學(xué)生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準(zhǔn)備)?

  例4 設(shè)字母a表示一個數(shù),用代數(shù)式表示:

  (1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的 ;

  (3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的 的和?

  分析:啟發(fā)學(xué)生,做分析練習(xí)?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?

  解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

  (通過本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問題和解決問題的能力?)

  例5 設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:

  (1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?

  (2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個座位?

  分析本題時,可提出如下問題:

  (1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))

  解:(1)m(m+6)個; (2)( m)m個?

  三、課堂練習(xí)

  1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)

  (1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;

  (3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的'差;(4)甲乙的差除以甲乙兩數(shù)的積的商?

  2?用代數(shù)式表示:

  (1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);

  (3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?

  3?用代數(shù)式表示:

  (1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);

  (3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?

  〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

  四、師生共同小結(jié)

  首先,請學(xué)生回答:

  1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?

  其次,教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:對于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:

  (1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);

  (2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個基本的數(shù)量關(guān)系;

  (3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備?要求學(xué)生一定要牢固掌握?

  五、作業(yè)

  1?用代數(shù)式表示:

  (1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?

  (2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?

  2?已知一個長方形的周長是24厘米,一邊是a厘米,

  求:(1)這個長方形另一邊的長;(2)這個長方形的面積.

  學(xué)法探究

  已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

  分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看 有沒有規(guī)律.

  當(dāng)圓環(huán)為三個的時候,如圖:

  此時鏈長為,這個結(jié)論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:

  解:

  =99a+b(cm)

七年級數(shù)學(xué)教案9

  學(xué)生很容易解決,相互交流,自我評價,增強學(xué)生的主人翁意識。

  3、電腦演示:

  如下圖,第一行的圖形繞虛線旋轉(zhuǎn)一周,便能形成第二行的某個幾何體,用線連一連。

  由平面圖形動成立體圖形,由靜態(tài)到動態(tài),讓學(xué)生感受到幾何圖形的奇妙無窮,更加激發(fā)他們的好奇心和探索欲望。

  四、做一做(實踐)

  1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學(xué)做得比較標(biāo)準(zhǔn)。

  2、使出事先準(zhǔn)備好的等邊三角形紙片,試將它折成一個正四面體。

  五、試一試(探索)

  課前,發(fā)給學(xué)生閱讀材料《晶體--自然界的多面體》,讓學(xué)生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵學(xué)生探索的欲望。

  教師出示實物模型:正四面體、正方體、正八面體、正十二面體、正二十面體

  1、以正四面體為例,說出它的頂點數(shù)、棱數(shù)和面數(shù)。

  2、再讓學(xué)生觀察、討論其它正多面體的頂點數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書上的P128的`表格。引導(dǎo)學(xué)生發(fā)現(xiàn)結(jié)論。

  3、(延伸):若隨意做一個多面體,看看是否還是那個結(jié)果。

  學(xué)生在探索過程中,可能會遇到困難,師生可以共同參與,適當(dāng)點撥,歸納出歐拉公式,并介紹歐拉這個人,進行科學(xué)探索精神教育,充分挖掘?qū)W生的潛能,讓學(xué)生積極參與集體探討,建立良好的相互了解的師生關(guān)系。

  六、小結(jié),布置課后作業(yè):

  1、用六根火柴:①最多可以拼出幾個邊長相等的三角形?②最多可以拼出如圖所示的三角形幾個?

  2、針對我校電腦室對全體學(xué)生開放的優(yōu)勢,教師告訴學(xué)生網(wǎng)址,讓學(xué)生從網(wǎng)上學(xué)習(xí)正多面體的制作。

  讓學(xué)生去動手操作,根據(jù)自身的能力,充分發(fā)揮創(chuàng)造性思維,培養(yǎng)學(xué)生的創(chuàng)新精神,使每個學(xué)生都能得到充分發(fā)展。

七年級數(shù)學(xué)教案10

  一、教學(xué)目標(biāo):

 、旁诰唧w情景中了解余角與補角,懂得余角和補角的性質(zhì),通過練習(xí)掌握余角和補角的概念及性質(zhì),并能運用它們解決一些簡單的實際問題。

 、平(jīng)歷觀察、操作、推理、交流等活動,發(fā)展學(xué)生的幾何概念,培養(yǎng)學(xué)生的推理能力和表達能力。

 、求w驗數(shù)學(xué)知識的發(fā)生、發(fā)展過程,敢于面對數(shù)學(xué)活動中的.困難,建立學(xué)好數(shù)學(xué)的自信心。

  二、教學(xué)重點、難點:

  余角與補角的性質(zhì)

  三、教學(xué)過程:

  復(fù)習(xí)、引入:

 、艔(fù)習(xí)角的定義。你知道有哪些特殊的角?

  ⑵用量角器量一量圖中每組兩個角的度數(shù),并求出它們的和。

  你有什么發(fā)現(xiàn)?

  新課:

  由學(xué)生的發(fā)現(xiàn),給出余角和補角的定義(文字敘述)。

  并且用數(shù)學(xué)符號語言進行理解。

  問題1:如何求一個角的余角和補角。

 、佟1的余角:90°-∠1

 、凇夕恋难a角:180°-∠α

  練習(xí):填表(求一個角的余角、補角)

  拓廣:觀察表格,你發(fā)現(xiàn)α的余角和α的補角有什么關(guān)系?

  如何進行理論推導(dǎo)?

  結(jié)論:α的補角比α的余角大90°

  α一定是銳角

  鈍角沒有余角,但一定有補角。

七年級數(shù)學(xué)教案11

  教學(xué)目標(biāo)

  知識與能力

  從簡單的轉(zhuǎn)盤游戲開始,使學(xué)生在生活經(jīng)驗和試驗的基礎(chǔ)上,進一步體驗不確定事件的特點及事件發(fā)生的可能性大小。

  教學(xué)思考

  能用實驗對數(shù)學(xué)猜想做出檢驗,從而增加猜想的可信度。 解決問題

  在轉(zhuǎn)盤游戲過程中,經(jīng)歷猜測結(jié)果,實驗驗證,分析試驗結(jié)果等數(shù)學(xué)活動,增加數(shù)學(xué)活動經(jīng)驗。

  情感態(tài)度與價值觀

  在合作與交流過程中,體驗小組合作更有利于探究數(shù)學(xué)知識,敢于發(fā)表自己觀點,提高個人認識。

  教學(xué)重點難點:

  在實驗中,體會不確定事件的特點及事件發(fā)生可能性大小;使每個學(xué)生都能積極認真參與課堂設(shè)計中的實驗,真正在實驗中獲得知識上的認識。

  教學(xué)過程

  創(chuàng)設(shè)情境,切入標(biāo)題

  同學(xué)們,商場經(jīng)常利用轉(zhuǎn)盤游戲進行抽獎,你認為顧客們的中獎可能性有多大呢?這節(jié)課我們就來探究一下有關(guān)轉(zhuǎn)盤游戲的問題。 新課探究

  請同學(xué)們猜測,當(dāng)我自由轉(zhuǎn)動轉(zhuǎn)盤時,指針會落在什么顏域呢?

  請各小組分別派一名代表,看哪組能轉(zhuǎn)出紅色。

  結(jié)果,8小組有6組轉(zhuǎn)出了紅色。

  為什么會出現(xiàn)這樣的'結(jié)果呢?

  因為,在這個轉(zhuǎn)盤中,紅域的面積大,白域的面積小,因此,當(dāng)轉(zhuǎn)盤停上轉(zhuǎn)動時,指針落到紅域的可能性大。

  大家同意這種看法嗎?下面我們親自動手感受一下。

  學(xué)生按照題目要求進行實驗。

  請各組組長把你組的實驗數(shù)據(jù)匯報一下(教師把數(shù)據(jù)填寫在表格里) 實驗結(jié)果:六個小組每組實驗16次,全班共實驗96次,指針落在紅域的次數(shù)分別如下9,6,10,5,8,12。共計50次。

  請同學(xué)們對我們的實驗結(jié)果進行分析交流,談?wù)勀阍谠囼炛杏心男┬牡谩?/p>

  根據(jù)觀察,轉(zhuǎn)盤上紅域的面積為總面積的一半,指針落在紅域的可能性也應(yīng)該是一半。通過對我們?nèi)嗟膶嶒灲Y(jié)果分析,指針落在紅域的比例是50∶96,結(jié)果接近百分之五十。

  在小組內(nèi)實驗結(jié)果不明顯,實驗次數(shù)越多越能說明問題。

  通過實驗,我們確定感受到,轉(zhuǎn)盤游戲中各區(qū)域的面積的可能性大小與指針落在什么區(qū)域的可能性大小有直接關(guān)系。以后在生活中再遇到轉(zhuǎn)盤游戲問題可要想想今天的實驗結(jié)論。

  游戲與交流

  下面我們利用轉(zhuǎn)盤做一下數(shù)學(xué)游戲(出示幻燈片),學(xué)生按教學(xué)設(shè)計中要求進行游戲,教師巡回指導(dǎo)。

  每組每人游戲一次,全班共游戲48次。其游戲結(jié)果是,平均數(shù)增大1的,共35次,平均數(shù)減小1的,共13次。

  請同學(xué)們對下列問題進行交流(幻燈片出示教材206頁4個問題)。 這個轉(zhuǎn)盤轉(zhuǎn)到“平均數(shù)增大1”區(qū)域的可能性大,從面積大小就可以看出。

  如果平均數(shù)增大1,我是在卡片上增加一個數(shù),這個數(shù)等于卡片上數(shù)字的個數(shù)加1,如果是平均數(shù)減小1,我就在每個數(shù)上都減去1。

  同學(xué)們說出很多種方法,不一一列舉。

  “平均數(shù)增大1”的次數(shù)占總次數(shù)的百分之七十三,“平均數(shù)減小1”占百分之二十七。

  如果將這個實驗繼續(xù)做下去,卡片上所有數(shù)的平均數(shù)會增大。

  同學(xué)們說的都很好,課后能不能自己也利用轉(zhuǎn)盤設(shè)計一個新的游戲,感興趣的同學(xué)可以在課下與我交流。

  以下過程同教學(xué)設(shè)計,略去。

  隨堂練習(xí)

  指導(dǎo)學(xué)生完成教材第206頁習(xí)題。

  課時小結(jié)

  學(xué)生可從各個方面加以小結(jié)。 布置作業(yè)

  仿照課堂游戲,自編一個新的游戲。 能否利用撲克牌設(shè)計本節(jié)轉(zhuǎn)盤游戲。

七年級數(shù)學(xué)教案12

  一、教學(xué)目標(biāo)

  1、知識目標(biāo):掌握數(shù)軸三要素,會畫數(shù)軸。

  2、能力目標(biāo):能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;

  3、情感目標(biāo):向?qū)W生滲透數(shù)形結(jié)合的思想。

  二、教學(xué)重難點

  教學(xué)重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。

  教學(xué)難點:有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。

  三、教法

  主要采用啟發(fā)式教學(xué),引導(dǎo)學(xué)生自主探索去觀察、比較、交流。

  四、教學(xué)過程

  (一)創(chuàng)設(shè)情境激活思維

  1。學(xué)生觀看鐘祥二中相關(guān)背景視頻

  意圖:吸引學(xué)生注意力,激發(fā)學(xué)生自豪感。

  2。聯(lián)系實際,提出問題。

  問題1:鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。

  師生活動:學(xué)生思考解決問題的方法,學(xué)生代表畫圖演示。

  學(xué)生畫圖后提問:

  1。馬路用什么幾何圖形代表?(直線)

  2。文中相關(guān)地點用什么代表?(直線上的點)

  3。學(xué)校大門起什么作用?(基準(zhǔn)點、參照物)

  4。你是如何確定問題中各地點的位置的?(方向和距離)

  設(shè)計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學(xué)抽象。

  問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學(xué)校大門的相對位置關(guān)系呢?

  師生活動:

  學(xué)生思考后回答解決方法,學(xué)生代表畫圖。

  學(xué)生畫圖后提問:

  1。0代表什么?

  2。數(shù)的符號的實際意義是什么?

  3!75表示什么?100表示什么?

  設(shè)計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎(chǔ)。

  問題3:生活中常見的溫度計,你能描述一下它的結(jié)構(gòu)嗎?

  設(shè)計意圖:借助生活中的常用工具,說明正數(shù)和負數(shù)的作用,引導(dǎo)學(xué)生用三要素表達,為定義數(shù)軸的概念提供直觀基礎(chǔ)。

  問題4:你能說說上述2個實例的共同點嗎?

  設(shè)計意圖:進一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎(chǔ)。

 。ǘ┳灾鲗W(xué)習(xí)探究新知

  學(xué)生活動:帶著以下問題自學(xué)課本第8頁:

  1。什么樣的直線叫數(shù)軸?它具備什么條件。

  2。如何畫數(shù)軸?

  3。根據(jù)上述實例的經(jīng)驗,“原點”起什么作用?

  4。你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?

  師生活動:

  學(xué)生自學(xué)完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。

  設(shè)計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學(xué)們的頭腦中留下更深刻的印象,同時得到數(shù)軸的定義。

  至此,學(xué)生已會畫數(shù)軸,師生共同歸納總結(jié)(板書)

 、贁(shù)軸的定義。

 、跀(shù)軸三要素。

  練習(xí):(媒體展示)

  1。判斷下列圖形是否是數(shù)軸。

  2。口答:數(shù)軸上各點表示的數(shù)。

  3。在數(shù)軸上描出下列各點:1。5,—2,—2。5,2,2。5,0,—1。5。

 。ㄈ┬〗M合作交流展示

  問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?

  數(shù)軸上表示3的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?表示—2的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?設(shè)a是一個正數(shù),對表示a的點和—a的點進行同樣的討論。

  設(shè)計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學(xué)生的抽象概括能力。

 。ㄋ模w納總結(jié)反思提高

  師生共同回顧本節(jié)課所學(xué)主要內(nèi)容,回答以下問題:

  1。什么是數(shù)軸?

  2。數(shù)軸的“三要素”各指什么?

  3。數(shù)軸的畫法。

  設(shè)計意圖:梳理本節(jié)課內(nèi)容,掌握本節(jié)課的核心――數(shù)軸“三要素”。

  (五)目標(biāo)檢測設(shè)計

  1。下列命題正確的是()

  A。數(shù)軸上的點都表示整數(shù)。

  B。數(shù)軸上表示4與—4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。

  C。數(shù)軸包括原點與正方向兩個要素。

  D。數(shù)軸上的點只能表示正數(shù)和零。

  2。畫數(shù)軸,在數(shù)軸上標(biāo)出—5和+5之間的所有整數(shù),列舉到原點的.距離小于3的所有整數(shù)。

  3。畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有_______個。4。在數(shù)軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數(shù)軸上點A表示的數(shù)是________。

  五、板書

  1。數(shù)軸的定義。

  2。數(shù)軸的三要素(圖)。

  3。數(shù)軸的畫法。

  4。性質(zhì)。

  六、課后反思

  附:活動單

  活動一:畫一畫

  鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。

  思考:如何簡明地用數(shù)表示這些地理位置與學(xué)校大門的相對位置關(guān)系?

  活動二:讀一讀

  帶著以下問題閱讀教科書P8頁:

  1。什么樣的直線叫數(shù)軸?

  定義:規(guī)定了_________、________、_________的直線叫數(shù)軸。

  數(shù)軸的三要素:_________、_________、__________。

  2。畫數(shù)軸的步驟是什么?

  3。“原點”起什么作用?__________

  4。你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?

  練習(xí):

  1。畫一條數(shù)軸

  2。在你畫好的數(shù)軸上表示下列有理數(shù):1。5,—2,—2。5,2,2。5,0,—1。5

  活動三:議一議

  小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?

  歸納:一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的____邊,與原點的距離是____個單位長度;表示數(shù)—a的點在原點的____邊,與原點的距離是____個單位長度。

  練習(xí):

  1。數(shù)軸上表示—3的點在原點的_______側(cè),距原點的距離是______;表示6的點在原點的______側(cè),距原點的距離是______;兩點之間的距離為_______個單位長度。

  2。距離原點距離為5個單位的點表示的數(shù)是________。

  3。在數(shù)軸上,把表示3的點沿著數(shù)軸負方向移動5個單位長度,到達點B,則點B表示的數(shù)是________。

  附:目標(biāo)檢測

  1。下列命題正確的是()

  A。數(shù)軸上的點都表示整數(shù)。

  B。數(shù)軸上表示4與—4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。

  C。數(shù)軸包括原點與正方向兩個要素。

  D。數(shù)軸上的點只能表示正數(shù)和零。

  2。畫數(shù)軸,在數(shù)軸上標(biāo)出—5和+5之間的所有整數(shù)。列舉到原點的距離小于3的所有整數(shù)。

  3。畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有_______個。

  4。在數(shù)軸上點A表示—4,如果把原點O向負方向移動1。5個單位,那么在新數(shù)軸上點A表示的數(shù)是________。

七年級數(shù)學(xué)教案13

  教學(xué)目標(biāo):

  1.掌握數(shù)軸三要素,能正確畫出數(shù)軸.

  2.能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的數(shù).

  教學(xué)重點:

  數(shù)軸的概念.

  教學(xué)難點:

  從直觀認識到理性認識,從而建立數(shù)軸概念.

  教與學(xué)互動設(shè)計:

  (一)創(chuàng)設(shè)情境,導(dǎo)入新課

  課件展示課本P7的“問題”(學(xué)生畫圖)

  (二)合作交流,解讀探究

  師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數(shù)分別用正數(shù)和負數(shù)來表示,即用一直線上的點把正數(shù)、負數(shù)、0都表示出來,也就是本節(jié)要學(xué)的內(nèi)容——數(shù)軸.

  【點撥】(1)引導(dǎo)學(xué)生學(xué)會畫數(shù)軸.

  第一步:畫直線,定原點.

  第二步:規(guī)定從原點向右的方向為正(左邊為負方向).

  第三步:選擇適當(dāng)?shù)拈L度為單位長度(據(jù)情況而定).

  第四步:拿出教學(xué)溫度計,由學(xué)生觀察溫度計的結(jié)構(gòu)和數(shù)軸的結(jié)構(gòu)是否有共同之處.

  對比思考原點相當(dāng)于什么;正方向與什么一致;單位長度又是什么?

  (2)有了以上基礎(chǔ),我們可以來試著定義數(shù)軸:

  規(guī)定了原點、正方向和單位長度的直線叫數(shù)軸.

  做一做學(xué)生自己練習(xí)畫出數(shù)軸.

  試一試你能利用你自己畫的'數(shù)軸上的點來表示數(shù)4,1.5,-3,-2,0嗎?

  討論若a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?

  小結(jié)整數(shù)在數(shù)軸上都能找到點表示嗎?分數(shù)呢?

  可見,所有的都可以用數(shù)軸上的點表示;都在原點的左邊,都在原點的右邊.

  (三)應(yīng)用遷移,鞏固提高

  【例1】下列所畫數(shù)軸對不對?如果不對,指出錯在哪里?

  【例2】試一試:用你畫的數(shù)軸上的點表示4,1.5,-3,-,0.

  【例3】下列語句:

 、贁(shù)軸上的點只能表示整數(shù);②數(shù)軸是一條直線;③數(shù)軸上的一個點只能表示一個數(shù);④數(shù)軸上找不到既不表示正數(shù),又不表示負數(shù)的點;⑤數(shù)軸上的點所表示的數(shù)都是有理數(shù).正確的說法有(  )

  A.1個B.2個C.3個D.4個

  【例4】在數(shù)軸上表示-2和1,并根據(jù)數(shù)軸指出所有大于-2而小于1的整數(shù).

  【例5】數(shù)軸上表示整數(shù)的點稱為整點,某數(shù)軸的單位長度是1cm,若在這個數(shù)軸上隨意畫出一條長為20xxcm的線段AB,則線段AB蓋住的整點有(  )

  A.1998個或1999個B.1999個或20xx個

  C.20xx個或20xx個D.20xx個或20xx個

  (四)總結(jié)反思,拓展升華

  數(shù)軸是非常重要的工具,它使數(shù)和直線上的點建立了一一對應(yīng)的關(guān)系.它揭示了數(shù)和形的內(nèi)在聯(lián)系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數(shù)軸的三要素,正確畫出數(shù)軸.提醒大家,所有的有理數(shù)都可以用數(shù)軸上的相關(guān)點來表示,但反過來并不成立,即數(shù)軸上的點并不都表示有理數(shù).

  (五)課堂跟蹤反饋

  夯實基礎(chǔ)

  1.規(guī)定了、     、的直線叫做數(shù)軸,所有的有理數(shù)都可從用上的點來表示.

  2.P從數(shù)軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時P點所表示的數(shù)是.

  3.把數(shù)軸上表示2的點移動5個單位長度后,所得的對應(yīng)點表示的數(shù)是(  )

  A.7 B.-3

  C.7或-3 D.不能確定

  4.在數(shù)軸上,原點及原點左邊的點所表示的數(shù)是(  )

  A.正數(shù)B.負數(shù)

  C.不是負數(shù)D.不是正數(shù)

  5.數(shù)軸上表示5和-5的點離開原點的距離是,但它們分別表示.

  提升能力

  6.與原點距離為3.5個單位長度的點有2個,它們分別是和.

  7.畫出一條數(shù)軸,并把下列數(shù)表示在數(shù)軸上:

  +2,-3,0.5,0,-4.5,4,3.

  開放探究

  8.在數(shù)軸上與-1相距3個單位長度的點有個,為;長為3個單位長度的木條放在數(shù)軸上,最多能覆蓋個整數(shù)點.

  9.下列四個數(shù)中,在-2到0之間的數(shù)是(  )

  A.-1 B.1 C.-3 D.3

七年級數(shù)學(xué)教案14

  一、素質(zhì)教育目標(biāo)

  (一)知識教學(xué)點

  1.理解有理數(shù)乘方的意義.

  2.掌握有理數(shù)乘方的運算.

  (二)能力訓(xùn)練點

  1.培養(yǎng)學(xué)生觀察、分析、比較、歸納、概括的能力.

  2.滲透轉(zhuǎn)化思想.

  (三)德育滲透點:培養(yǎng)學(xué)生勤思、認真和勇于探索的精神.

  (四)美育滲透點

  把記成,顯示了乘方符號的簡潔美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:引導(dǎo)探索法,嘗試指導(dǎo),充分體現(xiàn)學(xué)生主體地位.

  2.學(xué)生學(xué)法:探索的性質(zhì)→練習(xí)鞏固

  三、重點、難點、疑點及解決辦法

  1.重點:運算.

  2.難點:運算的符號法則.

  3.疑點:①乘方和冪的區(qū)別.

 、谂c的區(qū)別.

  四、課時安排

  1課時

  五、教具學(xué)具準(zhǔn)備

  投影儀、自制膠片.

  六、師生互動活動設(shè)計

  教師引導(dǎo)類比,學(xué)生討論歸納乘方的概念,教師出示探索性練習(xí),學(xué)生討論歸納乘方的性質(zhì),教師出示鞏固性練習(xí),學(xué)生多種形式完成.

  七、教學(xué)步驟

  (一)創(chuàng)設(shè)情境,導(dǎo)入 新課

  師:在小學(xué)我們已經(jīng)學(xué)過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?

  生:可以記作,讀作的四次方.

  師:呢?

  生:可以記作,讀作的五次方.

  師:(為正整數(shù))呢?

  生:可以記作,讀作的次方.

  師:很好!把個相乘,記作,既簡單又明確.

  【教法說明】教師給學(xué)生創(chuàng)設(shè)問題情境,鼓勵學(xué)生積極參與,大大調(diào)動了學(xué)生學(xué)習(xí)的積極性.同時,使學(xué)生認識到數(shù)學(xué)的發(fā)展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學(xué)生通過類推得到的.

  師:在小學(xué)對底數(shù),我們只能取正數(shù).進入中學(xué)以后我們學(xué)習(xí)了有理數(shù),那么還可取哪些數(shù)呢?請舉例說明.

  生:還可取負數(shù)和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.

  非常好!對于中的,不僅可以取正數(shù),還可以取0和負數(shù),也就是說可以取任意有理數(shù),這就是我們今天研究的課題:(板書).

  【教法說明】對于的范圍,是在教師的引導(dǎo)下,學(xué)生積極動腦參與,并且根據(jù)初一學(xué)生的認知水平,分層逐步說明可以取正數(shù),可以取零,可以取負數(shù),最后總結(jié)出可以取任意有理數(shù).

  (二)探索新知,講授新課

  1.求個相同因數(shù)的積的運算,叫做乘方.

  乘方的結(jié)果叫做冪,相同的因數(shù)叫做底數(shù),相同的因數(shù)的個數(shù)叫做指數(shù).一般地,在中,取任意有理數(shù),取正整數(shù).

  注意:乘方是一種運算,冪是乘方運算的結(jié)果.看作是的次方的結(jié)果時,也可讀作的次冪.

  鞏固練習(xí)(出示投影1)

 。1)在中,底數(shù)是__________,指數(shù)是___________,讀作__________或讀作___________;

  (2)在中,-2是__________,4是__________,讀作__________或讀作__________;

  (3)在中,底數(shù)是_________,指數(shù)是__________,讀作__________;

 。4)5,底數(shù)是___________,指數(shù)是_____________.

  【教法說明】此組練習(xí)是鞏固乘方的有關(guān)概念,及時反饋學(xué)生掌握情況.(2)、(3)小題的區(qū)別表示底數(shù)是-2,指數(shù)是4的冪;而表示底數(shù)是2,指數(shù)是4的冪的相反數(shù).為后面的計算做鋪墊.通過第(4)小題指出一個數(shù)可以看作這個數(shù)本身的一次方,如5就是,指數(shù)1通常省略不寫.

  師:到目前為止,對有理數(shù)業(yè)說,我們已經(jīng)學(xué)過幾種運算?分別是什么?其運算結(jié)果叫什么?

  學(xué)生活動:同學(xué)們思考,前后桌同學(xué)互相討論交流,然后舉手回答.

  生:到目前為止,已經(jīng)學(xué)習(xí)過五種運算,它們是:

  運算:加、減、乘、除、乘方;

  運算結(jié)果:和、差、積、商、冪;

  教師對學(xué)生的回答給予評價并鼓勵.

  【教法說明】注重學(xué)生在認知過程中的思維.主動參與,通過學(xué)生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養(yǎng)學(xué)生歸納、總結(jié)的.能力.

  師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.

  學(xué)生活動:學(xué)生積極思考,同桌相互討論,并在練習(xí)本上舉例.

  【教法說明】通過學(xué)生積極動腦,主動參與,得出可以利用有理數(shù)的乘法運算來進行有理數(shù)乘方的運算.向?qū)W生滲透轉(zhuǎn)化的思想.

  2.練習(xí):(出示投影2)

  計算:1.(1)2, (2), (3), (4).

  2.(1),,,.

 。2)-2,,.

  3.(1)0, (2), (3), (4).

  學(xué)生活動:學(xué)生獨立完成解題過程,請三個學(xué)生板演,教師巡回指導(dǎo),待學(xué)生完成后,師生共同評價對錯,并予以鼓勵.

  師:請同學(xué)們觀察、分析、比較這三組題中,每組題中底數(shù)、指數(shù)和冪之間有什么聯(lián)系?

  先讓學(xué)生獨立思考,教師邊巡視邊做適當(dāng)提示.然后讓學(xué)生討論,老師加入某一小組.

  生:正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù),零的任何次冪都是零.

  師:請同學(xué)們繼續(xù)觀察與,與中,底數(shù)、指數(shù)和冪之間有何聯(lián)系?你能得出什么結(jié)論呢?

  學(xué)生活動:學(xué)生積極思考,同桌之間、前后桌之間互相討論.

  生:互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等.

  師:請同學(xué)思考一個問題,任何一個數(shù)的偶次冪是什么數(shù)?

  生:任何一個數(shù)的偶次冪是非負數(shù).

  師:你能把上述結(jié)論用數(shù)學(xué)符號表示嗎?

  生:(1)當(dāng)時,(為正整數(shù));

  (2)當(dāng)

 。3)當(dāng)時,(為正整數(shù));

  (4)(為正整數(shù));

 。檎麛(shù));

 。檎麛(shù),為有理數(shù)).

  【教法說明】教師把重點放在教學(xué)情境的設(shè)計上,通過學(xué)生自己探索,獲取知識.教師要始終給學(xué)生創(chuàng)造發(fā)揮的機會,注重學(xué)生參與.學(xué)生通過特殊問題歸納出一般性的結(jié)論,既訓(xùn)練學(xué)生歸納總結(jié)的能力和口頭表達的能力,又能使學(xué)生對法則記得牢,領(lǐng)會的深刻.

七年級數(shù)學(xué)教案15

  教學(xué)目標(biāo)

  1.知識與技能

 、倮斫庥欣頂(shù)的意義.②能把給出的有理數(shù)按要求分類.③了解0在有理數(shù)分類的作用.

  2.過程與方法

  經(jīng)歷本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生樹立分類討論的觀點和能正確地進行分類的能力.

  3.情感、態(tài)度與價值觀

  通過聯(lián)系與發(fā)展、對立與統(tǒng)一的.思考方法對學(xué)生進行辯證唯物主義教育.

  教學(xué)重點難點

  重點:會把所給的各數(shù)填入它所在的數(shù)集的圖里.難點:掌握有理數(shù)的兩種分類.

  教與學(xué)互動設(shè)計

  (一)創(chuàng)設(shè)情境,導(dǎo)入新課

  討論交流現(xiàn)在,同學(xué)們都已經(jīng)知道除了我們小學(xué)里所學(xué)的數(shù)之外,還有另一種形式的數(shù),即負數(shù).大家討論一下,到目前為止,你已經(jīng)認識了哪些類型的數(shù).

  (二)合作交流,解讀探究

  學(xué)生列舉:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

  議一議你能說說這些數(shù)的特點嗎?

  學(xué)生回答,并相互補充:有小學(xué)學(xué)過的整數(shù)、0、分數(shù),也有負整數(shù)、負分數(shù).

  說明:我們把所有的這些數(shù)統(tǒng)稱為有理數(shù).