- 高一數(shù)學(xué)教案《函數(shù)概念》 推薦度:
- 相關(guān)推薦
高一數(shù)學(xué)教案通用15篇
作為一位兢兢業(yè)業(yè)的人民教師,可能需要進行教案編寫工作,通過教案準備可以更好地根據(jù)具體情況對教學(xué)進程做適當?shù)谋匾恼{(diào)整。怎樣寫教案才更能起到其作用呢?下面是小編幫大家整理的高一數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
高一數(shù)學(xué)教案1
學(xué)習(xí)是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學(xué)教案:數(shù)列,希望對您有所幫助!
教學(xué)目標
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式.
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項.
2.通過對一列數(shù)的'觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學(xué)生嚴謹?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
教學(xué)建議
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等.
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助.
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負相間用來調(diào)整等.如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系.
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào)的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運用函數(shù)知識是可以解決的.
上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實際需要!
高一數(shù)學(xué)教案2
學(xué)習(xí)目標
1.能根據(jù)拋物線的定義建立拋物線的標準方程;
2.會根據(jù)拋物線的標準方程寫出其焦點坐標與準線方程;
3.會求拋物線的標準方程。
一、預(yù)習(xí)檢查
1.完成下表:
標準方程
圖形
焦點坐標
準線方程
開口方向
2.求拋物線的焦點坐標和準線方程.
3.求經(jīng)過點的拋物線的標準方程.
二、問題探究
探究1:回顧拋物線的定義,依據(jù)定義,如何建立拋物線的標準方程?
探究2:方程是拋物線的標準方程嗎?試將其與拋物線的標準方程辨析比較.
例1.已知拋物線的頂點在原點,對稱軸為坐標軸,焦點在直線上,求拋物線的方程.
例2.已知拋物線的'焦點在軸上,點是拋物線上的一點,到焦點的距離是5,求的值及拋物線的標準方程,準線方程.
例3.拋物線的頂點在原點,對稱軸為軸,它與圓相交,公共弦的長為.求該拋物線的方程,并寫出其焦點坐標與準線方程.
三、思維訓(xùn)練
1.在平面直角坐標系中,若拋物線上的點到該拋物線的焦點的距離為6,則點的橫坐標為.
2.拋物線的焦點到其準線的距離是.
3.設(shè)為拋物線的焦點,為該拋物線上三點,若,則=.
4.若拋物線上兩點到焦點的距離和為5,則線段的中點到軸的距離是.
5.(理)已知拋物線,有一個內(nèi)接直角三角形,直角頂點在原點,斜邊長為,一直角邊所在直線方程是,求此拋物線的方程。
四、課后鞏固
1.拋物線的準線方程是.
2.拋物線上一點到焦點的距離為,則點到軸的距離為.
3.已知拋物線,焦點到準線的距離為,則.
4.經(jīng)過點的拋物線的標準方程為.
5.頂點在原點,以雙曲線的焦點為焦點的拋物線方程是.
6.拋物線的頂點在原點,以軸為對稱軸,過焦點且傾斜角為的直線被拋物線所截得的弦長為8,求拋物線的方程.
7.若拋物線上有一點,其橫坐標為,它到焦點的距離為10,求拋物線方程和點的坐標。
高一數(shù)學(xué)教案3
教學(xué)目標
會運用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。
重 點
函數(shù)單調(diào)性的證明及判斷。
難 點
函數(shù)單調(diào)性證明及其應(yīng)用。
一、復(fù)習(xí)引入
1、函數(shù)的定義域、值域、圖象、表示方法
2、函數(shù)單調(diào)性
(1)單調(diào)增函數(shù)
(2)單調(diào)減函數(shù)
(3)單調(diào)區(qū)間
二、例題分析
例1、畫出下列函數(shù)圖象,并寫出單調(diào)區(qū)間:
(1) (2) (2)
例2、求證:函數(shù) 在區(qū)間 上是單調(diào)增函數(shù)。
例3、討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。
變(1)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論
變(2)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。
例4、試判斷函數(shù) 在 上的單調(diào)性。
三、隨堂練習(xí)
1、判斷下列說法正確的是 。
(1)若定義在 上的函數(shù) 滿足 ,則函數(shù) 是 上的單調(diào)增函數(shù);
(2)若定義在 上的函數(shù) 滿足 ,則函數(shù) 在 上不是單調(diào)減函數(shù);
(3)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù);
(4)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù)。
2、若一次函數(shù) 在 上是單調(diào)減函數(shù),則點 在直角坐標平面的( )
A.上半平面 B.下半平面 C.左半平面 D.右半平面
3、函數(shù) 在 上是___ ___;函數(shù) 在 上是__ _____。
3.下圖分別為函數(shù) 和 的圖象,求函數(shù) 和 的單調(diào)增區(qū)間。
4、求證:函數(shù) 是定義域上的單調(diào)減函數(shù)。
四、回顧小結(jié)
1、函數(shù)單調(diào)性的'判斷及證明。
課后作業(yè)
一、基礎(chǔ)題
1、求下列函數(shù)的單調(diào)區(qū)間
(1) (2)
2、畫函數(shù) 的圖象,并寫出單調(diào)區(qū)間。
二、提高題
3、求證:函數(shù) 在 上是單調(diào)增函數(shù)。
4、若函數(shù) ,求函數(shù) 的單調(diào)區(qū)間。
5、若函數(shù) 在 上是增函數(shù),在 上是減函數(shù),試比較 與 的大小。
三、能力題
6、已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。
變(1)已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。
高一數(shù)學(xué)教案4
一、教材分析
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學(xué)生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點分析
根據(jù)對上述對教材的分析及新課程標準的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。
三、學(xué)情分析
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標分析
1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。
2、通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認知過程。
學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
高一必修二數(shù)學(xué)教案41、教材(教學(xué)內(nèi)容)
本課時主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學(xué)模型,本課時的內(nèi)容具有承前啟后的重要作用:承前是因為可以用函數(shù)的定義來抽象和規(guī)范三角函數(shù)的定義,同時也可以類比研究函數(shù)的模式和方法來研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進一步研究三角函數(shù)的性質(zhì)及圖象特征,并體會三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領(lǐng)會數(shù)學(xué)在其它領(lǐng)域中的重要應(yīng)用、
2、設(shè)計理念
本堂課采用“問題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現(xiàn)了教師的引導(dǎo)作用。整堂課先通過問題引導(dǎo)學(xué)生梳理已有的知識結(jié)構(gòu),展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運動等具周期性規(guī)律運動可以建立函數(shù)模型來刻畫嗎?從而引導(dǎo)學(xué)生帶著問題閱讀和鉆研教材,引發(fā)認知沖突,再通過問題引導(dǎo)學(xué)生改造或重構(gòu)已有的認知結(jié)構(gòu),并運用類比方法,形成“任意角三角函數(shù)的`定義”這一新的概念,最后通過例題與練習(xí),將任意角三角函數(shù)的定義,內(nèi)化為學(xué)生新的認識結(jié)構(gòu),從而達成教學(xué)目標、
3、教學(xué)目標
知識與技能目標:形成并掌握任意角三角函數(shù)的定義,并學(xué)會運用這一定義,解決相關(guān)問題、
過程與方法目標:體會數(shù)學(xué)建模思想、類比思想和化歸思想在數(shù)學(xué)新概念形成中的重要作用、
情感態(tài)度與價值觀目標:引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點難點
重點:任意角三角函數(shù)的定義、
難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析
學(xué)生已有的認知結(jié)構(gòu):函數(shù)的概念、平面直角坐標系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念、在教學(xué)過程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學(xué)生形成新的認知結(jié)構(gòu)、
6、教法分析
“問題解決”教學(xué)法,是以問題為主線,引導(dǎo)和驅(qū)動學(xué)生的思維和學(xué)習(xí)活動,并通過問題,引導(dǎo)學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的思維過程,最后在解決問題的過程中形成新的認知結(jié)構(gòu)、這種教學(xué)模式能較好地體現(xiàn)課堂上老師的主導(dǎo)作用,也能充分發(fā)揮課堂上學(xué)生的主體作用、
7、學(xué)法分析
本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認識結(jié)構(gòu),達成教學(xué)目標。
高一數(shù)學(xué)教案5
【學(xué)習(xí)目標】
1、感受數(shù)學(xué)探索的成功感,提高學(xué)習(xí)數(shù)學(xué)的興趣;
2、經(jīng)歷誘導(dǎo)公式的探索過程,感悟由未知到已知、復(fù)雜到簡單的數(shù)學(xué)轉(zhuǎn)化思想。
3、能借助單位圓的對稱性理解記憶誘導(dǎo)公式,能用誘導(dǎo)公式進行簡單應(yīng)用。
【學(xué)習(xí)重點】三角函數(shù)的誘導(dǎo)公式的理解與應(yīng)用
【學(xué)習(xí)難點】誘導(dǎo)公式的推導(dǎo)及靈活運用
【知識鏈接】(1)單位圓中任意角α的正弦、余弦的定義
。2)對稱性:已知點P(x,),那么,點P關(guān)于x軸、軸、原點對稱的點坐標
【學(xué)習(xí)過程】
一、預(yù)習(xí)自學(xué)
閱讀書第19頁——20頁內(nèi)容,通過對-α、π-α、π+α、2π-α、α的終邊與單位圓的交點的對稱性規(guī)律的探究,結(jié)合單位圓中任意角的正弦、余弦的定義,從中自我發(fā)現(xiàn)歸納出三角函數(shù)的誘導(dǎo)公式,并寫出下列關(guān)系:
(1)- 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式與 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系
(2)角407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系
(3)角 407[導(dǎo)學(xué)案]4.4單位圓的'對稱性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系
(4)角 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系
二、合作探究
探究1、求下列函數(shù)值,思考你用到了哪些三角函數(shù)誘導(dǎo)公式?試總結(jié)一下求任意角的三角函數(shù)值的過程與方法。
。1) 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 (2) 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 (3)sin(-1650°);
探究2: 化簡: 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式(先逐個化簡)
探究3、利用單位圓求滿足 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 的角的集合。
三、學(xué)習(xí)小結(jié)
(1)你能說說化任意角的正(余)弦函數(shù)為銳角正(余)弦函數(shù)的一般思路嗎?
。2)本節(jié)學(xué)習(xí)涉及到什么數(shù)學(xué)思想方法?
。3)我的疑惑有
【達標檢測】
1、在單位圓中,角α的終邊與單位圓交于點P(- 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 , 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 ),
則sin(-α)= ;cs(α±π)= ;cs(π-α)=
2.求下列函數(shù)值:
(1)sin( 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 )= ; (2) cs210&rd;=
3、若csα=-1/2,則α的集合S=
高一數(shù)學(xué)教案6
本文題目:高一數(shù)學(xué)教案:對數(shù)函數(shù)及其性質(zhì)
2.2.2 對數(shù)函數(shù)及其性質(zhì)(二)
內(nèi)容與解析
(一) 內(nèi)容:對數(shù)函數(shù)及其性質(zhì)(二)。
(二) 解析:從近幾年高考試題看,主要考查對數(shù)函數(shù)的性質(zhì),一般綜合在對數(shù)函數(shù)中考查.題型主要是選擇題和填空題,命題靈活.學(xué)習(xí)本部分時,要重點掌握對數(shù)的運算性質(zhì)和技巧,并熟練應(yīng)用.
一、 目標及其解析:
(一) 教學(xué)目標
(1) 了解對數(shù)函數(shù)在生產(chǎn)實際中的簡單應(yīng)用.進一步理解對數(shù)函數(shù)的圖象和性質(zhì);
(2) 學(xué)習(xí)反函數(shù)的概念,理解對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),能夠在同一坐標上看出互為反函數(shù)的兩個函數(shù)的圖象性質(zhì)..
(二) 解析
(1)在對數(shù)函數(shù) 中,底數(shù) 且 ,自變量 ,函數(shù)值 .作為對數(shù)函數(shù)的三個要點,要做到道理明白、記憶牢固、運用準確.
(2)反函數(shù)求法:①確定原函數(shù)的值域即新函數(shù)的定義域.②把原函數(shù)y=f(x)視為方程,用y表示出x.③把x、y互換,同時標明反函數(shù)的定義域.
二、 問題診斷分析
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是不易理解反函數(shù),熟練掌握其轉(zhuǎn)化關(guān)系是學(xué)好對數(shù)函數(shù)與反函數(shù)的基礎(chǔ)。
三、 教學(xué)支持條件分析
在本節(jié)課一次遞推的教學(xué)中,準備使用PowerPoint 20xx。因為使用PowerPoint 20xx,有利于提供準確、最核心的文字信息,有利于幫助學(xué)生順利抓住老師上課思路,節(jié)省老師板書時間,讓學(xué)生盡快地進入對問題的分析當中。
四、 教學(xué)過程
問題一. 對數(shù)函數(shù)模型思想及應(yīng)用:
① 出示例題:溶液酸堿度的測量問題:溶液酸堿度pH的計算公式 ,其中 表示溶液中氫離子的.濃度,單位是摩爾/升.
(Ⅰ)分析溶液酸堿讀與溶液中氫離子濃度之間的關(guān)系?
(Ⅱ)純凈水 摩爾/升,計算純凈水的酸堿度.
、谟懻摚撼橄蟪龅暮瘮(shù)模型? 如何應(yīng)用函數(shù)模型解決問題? 強調(diào)數(shù)學(xué)應(yīng)用思想
問題二.反函數(shù):
① 引言:當一個函數(shù)是一一映射時, 可以把這個函數(shù)的因變量作為一個新函數(shù)的自變量, 而把這個函數(shù)的自變量新的函數(shù)的因變量. 我們稱這兩個函數(shù)為反函數(shù)(inverse function)
、 探究:如何由 求出x?
③ 分析:函數(shù) 由 解出,是把指數(shù)函數(shù) 中的自變量與因變量對調(diào)位置而得出的. 習(xí)慣上我們通常用x表示自變量,y表示函數(shù),即寫為 .
那么我們就說指數(shù)函數(shù) 與對數(shù)函數(shù) 互為反函數(shù)
④ 在同一平面直角坐標系中,畫出指數(shù)函數(shù) 及其反函數(shù) 圖象,發(fā)現(xiàn)什么性質(zhì)?
、 分析:取 圖象上的幾個點,說出它們關(guān)于直線 的對稱點的坐標,并判斷它們是否在 的圖象上,為什么?
⑥ 探究:如果 在函數(shù) 的圖象上,那么P0關(guān)于直線 的對稱點在函數(shù) 的圖象上嗎,為什么?
由上述過程可以得到什么結(jié)論?(互為反函數(shù)的兩個函數(shù)的圖象關(guān)于直線 對稱)
、呔毩(xí):求下列函數(shù)的反函數(shù): ;
(師生共練 小結(jié)步驟:解x ;習(xí)慣表示;定義域)
(二)小結(jié):函數(shù)模型應(yīng)用思想;反函數(shù)概念;閱讀P84材料
五、 目標檢測
1.(20xx全國卷Ⅱ文)函數(shù)y= (x 0)的反函數(shù)是
A. (x 0) B. (x 0) C. (x 0) D. (x 0)
1.B 解析:本題考查反函數(shù)概念及求法,由原函數(shù)x 0可知A、C錯,原函數(shù)y 0可知D錯,選B.
2. (20xx廣東卷理)若函數(shù) 是函數(shù) 的反函數(shù),其圖像經(jīng)過點 ,則 ( )
A. B. C. D.
2. B 解析: ,代入 ,解得 ,所以 ,選B.
3. 求函數(shù) 的反函數(shù)
3.解析:顯然y0,反解 可得, ,將x,y互換可得 .可得原函數(shù)的反函數(shù)為 .
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會為您整理更多更好的文章,希望本文高一數(shù)學(xué)教案:對數(shù)函數(shù)及其性質(zhì)能給您帶來幫助!
高一數(shù)學(xué)教案7
教學(xué)目標:
使學(xué)生理解函數(shù)的概念,明確決定函數(shù)的三個要素,學(xué)會求某些函數(shù)的定義域,掌握判定兩個函數(shù)是否相同的方法;使學(xué)生理解靜與動的辯證關(guān)系.
教學(xué)重點:
函數(shù)的概念,函數(shù)定義域的求法.
教學(xué)難點:
函數(shù)概念的理解.
教學(xué)過程:
、.課題導(dǎo)入
[師]在初中,我們已經(jīng)學(xué)習(xí)了函數(shù)的概念,請同學(xué)們回憶一下,它是怎樣表述的?
(幾位學(xué)生試著表述,之后,教師將學(xué)生的回答梳理,再表述或者啟示學(xué)生將表述補充完整再條理表述).
設(shè)在一個變化的過程中有兩個變量x和y,如果對于x的每一個值,y都有惟一的值與它對應(yīng),那么就說y是x的函數(shù),x叫做自變量.
[師]我們學(xué)習(xí)了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請同學(xué)們思考下面兩個問題:
問題一:y=1(xR)是函數(shù)嗎?
問題二:y=x與y=x2x 是同一個函數(shù)嗎?
(學(xué)生思考,很難回答)
[師]顯然,僅用上述函數(shù)概念很難回答這些問題,因此,需要從新的高度來認識函數(shù)概念(板書課題).
、.講授新課
[師]下面我們先看兩個非空集合A、B的元素之間的一些對應(yīng)關(guān)系的例子.
在(1)中,對應(yīng)關(guān)系是乘2,即對于集合A中的每一個數(shù)n,集合B中都有一個數(shù)2n和它對應(yīng).
在(2)中,對應(yīng)關(guān)系是求平方,即對于集合A中的每一個數(shù)m,集合B中都有一個平方數(shù)m2和它對應(yīng).
在(3)中,對應(yīng)關(guān)系是求倒數(shù),即對于集合A中的每一個數(shù)x,集合B中都有一個數(shù) 1x 和它對應(yīng).
請同學(xué)們觀察3個對應(yīng),它們分別是怎樣形式的對應(yīng)呢?
[生]一對一、二對一、一對一.
[師]這3個對應(yīng)的共同特點是什么呢?
[生甲]對于集合A中的任意一個數(shù),按照某種對應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對應(yīng).
[師]生甲回答的很好,不但找到了3個對應(yīng)的共同特點,還特別強調(diào)了對應(yīng)關(guān)系,事實上,一個集合中的數(shù)與另一集合中的數(shù)的對應(yīng)是按照一定的關(guān)系對應(yīng)的,這是不能忽略的. 實際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對應(yīng)關(guān)系.
現(xiàn)在我們把函數(shù)的概念進一步敘述如下:(板書)
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對應(yīng),那么就稱f︰AB為從集合A到集合B的一個函數(shù).
記作:y=f(x),xA
其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xA}叫函數(shù)的值域.
一次函數(shù)f(x)=ax+b(a0)的定義域是R,值域也是R.對于R中的任意一個數(shù)x,在R中都有一個數(shù)f(x)=ax+b(a0)和它對應(yīng).
反比例函數(shù)f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對于A中的任意一個實數(shù)x,在B中都有一個實數(shù)f(x)= kx (k0)和它對應(yīng).
二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R,值域是當a0時B={f(x)|f(x)4ac-b24a };當a0時,B={f(x)|f(x)4ac-b24a },它使得R中的任意一個數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a0)對應(yīng).
函數(shù)概念用集合、對應(yīng)的語言敘述后,我們就很容易回答前面所提出的兩個問題.
y=1(xR)是函數(shù),因為對于實數(shù)集R中的任何一個數(shù)x,按照對應(yīng)關(guān)系函數(shù)值是1,在R中y都有惟一確定的值1與它對應(yīng),所以說y是x的函數(shù).
Y=x與y=x2x 不是同一個函數(shù),因為盡管它們的對應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個函數(shù).
[師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?
(教師提出問題,啟發(fā)、引導(dǎo)學(xué)生思考、討論,并和學(xué)生一起歸納、總結(jié))
注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對應(yīng).
、诜杅:AB表示A到B的一個函數(shù),它有三個要素;定義域、值域、對應(yīng)關(guān)系,三者缺一不可.
、奂螦中數(shù)的任意性,集合B中數(shù)的惟一性.
④f表示對應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.
、輋(x)是一個符號,絕對不能理解為f與x的乘積.
[師]在研究函數(shù)時,除用符號f(x)表示函數(shù)外,還常用g(x) 、F(x)、G(x)等符號來表示
、.例題分析
[例1]求下列函數(shù)的定義域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函數(shù)的定義域通常由問題的實際背景確定.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域.那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)x的集合.
解:(1)x-20,即x2時,1x-2 有意義
這個函數(shù)的定義域是{x|x2}
(2)3x+20,即x-23 時3x+2 有意義
函數(shù)y=3x+2 的定義域是[-23 ,+)
(3) x+10 x2
這個函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).
注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.
從上例可以看出,當確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時,常有以下幾種情況:
(1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R;
(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合;
(3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號內(nèi)的式子不小于零的實數(shù)的集合;
(4)如果f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實數(shù)的集合(即使每個部分有意義的實數(shù)的集合的交集);
(5)如果f(x)是由實際問題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實際意義的實數(shù)的集合.
例如:一矩形的寬為x m,長是寬的2倍,其面積為y=2x2,此函數(shù)定義域為x0而不是全體實數(shù).
由以上分析可知:函數(shù)的定義域由數(shù)學(xué)式子本身的意義和問題的實際意義決定.
[師]自變量x在定義域中任取一個確定的值a時,對應(yīng)的函數(shù)值用符號f(a)來表示.例如,函數(shù)f(x)=x2+3x+1,當x=2時的函數(shù)值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當自變量x=a時的函數(shù)值.
下面我們來看求函數(shù)式的值應(yīng)該怎樣進行呢?
[生甲]求函數(shù)式的值,嚴格地說是求函數(shù)式中自變量x為某一確定的值時函數(shù)式的值,因此,求函數(shù)式的.值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進行計算即可.
[師]回答正確,不過要準確地求出函數(shù)式的值,計算時萬萬不可粗心大意噢!
[生乙]判定兩個函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時,這兩個函數(shù)就相同;不完全一致時,這兩個函數(shù)就不同.
[師]生乙的回答完整嗎?
[生]完整!(課本上就是如生乙所述那樣寫的).
[師]大家說,判定兩個函數(shù)是否相同的依據(jù)是什么?
[生]函數(shù)的定義.
[師]函數(shù)的定義有三個要素:定義域、值域、對應(yīng)關(guān)系,我們判定兩個函數(shù)是否相同為什么只看兩個要素:定義域和對應(yīng)關(guān)系,而不看值域呢?
(學(xué)生竊竊私語:是啊,函數(shù)的三個要素不是缺一不可嗎?怎不看值域呢?)
(無人回答)
[師]同學(xué)們預(yù)習(xí)時還是欠仔細,欠思考!我們做事情,看問題都要多問幾個為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對應(yīng)關(guān)系,三者就全看了!
(生恍然大悟,我們怎么就沒想到呢?)
[例2]求下列函數(shù)的值域
(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運算確定其值域.
對于(1)(2)可用直接法根據(jù)它們的定義域及對應(yīng)法則得到(1)(2)的值域.
對于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即圖象法.
解:(1)yR
(2)y{1,0,-1}
(3)畫出y=x2+4x+3(-31)的圖象,如圖所示,
當x[-3,1]時,得y[-1,8]
、.課堂練習(xí)
課本P24練習(xí)17.
、.課時小結(jié)
本節(jié)課我們學(xué)習(xí)了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學(xué)習(xí)函數(shù)定義應(yīng)注意的問題及求定義域時的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學(xué)生自己來歸納)
Ⅵ.課后作業(yè)
課本P28,習(xí)題1、2. 文 章來
高一數(shù)學(xué)教案8
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
1。獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2。提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3。提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4。發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出判斷。
5。提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6。具有一定的數(shù)學(xué)視野,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書數(shù)學(xué)(a版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點:
1。親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2。問題性:以恰時恰點的.問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3。科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4。時代性與應(yīng)用性:以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
三、教法分析:
1。選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2。通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進學(xué)生的學(xué)習(xí)方式。
3。在教學(xué)中強調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
四、學(xué)情分析:
1、基本情況:12班共人,男生人,女生人;本班相對而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。
14班共人,男生人,女生人;本班相對而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。
2、兩個班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點在于培養(yǎng)學(xué)生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
高一數(shù)學(xué)教案9
教學(xué)目標 :
、僬莆諏(shù)函數(shù)的性質(zhì)。
、趹(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)
合函數(shù)的定義域、值 域及單調(diào)性。
、 注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高
解題能力。
教學(xué)重點與難點:對數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程 設(shè)計:
、睆(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。
、查_始正課
1、比較數(shù)的大小
例 1:比較下列各組數(shù)的大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
、苐og0.50.6 ,logЛ0.5 ,lnЛ
師:請同學(xué)們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調(diào)性取決于底的大小:當0
調(diào)遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調(diào)遞
增,所以loga5.1
板書:
∵5.1<5.9 loga5.1="">loga5.9
、颍┊攁>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學(xué)們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大。
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數(shù)值的大小常用方法:
、贅(gòu)造對數(shù)函數(shù),直接利用對數(shù)函數(shù) 的單調(diào)性比大小
、诮栌谩爸虚g量”間接比大小
、劾脤(shù)函數(shù)圖象的位置關(guān)系來比大小。
2、函數(shù)的定義域, 值 域及單調(diào)性。
例 2:
、徘蠛瘮(shù)y=的定義域。
⑵解不等式log0.2(x2+2x—3)>log0.2(3x+3)
師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時出現(xiàn)以上幾種情況,就要全部考慮進去,求它們共同作用的結(jié)果。)
生:分母2x—1≠0且偶次根式的被開方式log0.8x—1≥0,且真數(shù)x>0。
板書:
解:∵ 2x—1≠0 x≠0.5
log0.8x—1≥0 , x≤0.8x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個不等式。
分析:要解這個不等式,首先要使這個不等式有意義,即真數(shù)大于零,再根據(jù)對數(shù)函數(shù)的`單調(diào)性求解。
師:請你寫一下這道題的解題過程。
生:<板書>
解: x2+2x—3>0 x<—3 x="">1
。3x+3)>0 , x>—1
x2+2x—3<(3x+3) —2
不等式的解為:1
例 3:求下列函數(shù)的值域和單調(diào)區(qū)間。
⑴y=log0.5(x— x2)
、苰=loga(x2+2x—3)(a>0,a≠1)
師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。
下面請同學(xué)們來解⑴。
生:此函數(shù)可看作是由y=log0。5u, u=x— x2復(fù)合而成。
板書:
解:⑴∵u=x— x2>0, ∴0
u=x— x2=—(x—0.5)2+0.25, ∴0
∴y=log0.5u≥log0.50..25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u=x— x2
y=log0.5u
y=log0.5(x— x2)
函數(shù)y=log0.5(x— x2)的單調(diào)遞減區(qū)間(0,0.5],單調(diào)遞 增區(qū)間[0.5,1)
注:研究任何函數(shù)的性質(zhì)時,都應(yīng)該首先保證這個函數(shù)有意義,否則函數(shù)都不存在,性質(zhì)就無從談起。
師:在⑴的基礎(chǔ)上,我們一起來解⑵。請同學(xué)們觀察一下⑴與⑵有什么區(qū)別?
生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。
師:那么⑵如何來解?
生:只要對a進行分類討論,做法與⑴類似。
板書:略。
⒊小結(jié)
這堂課主要講解如何應(yīng)用對數(shù)函數(shù)的性質(zhì)解決一些問題,希望能通過這堂課使同學(xué)們對等價轉(zhuǎn)化、分類討論等思想加以應(yīng)用,提高解題能力。
、醋鳂I(yè)
⑴解不等式
、賚g(x2—3x—4)≥lg(2x+10);②loga(x2—x)≥loga(x+1),(a為常數(shù))
、埔阎瘮(shù)y=loga(x2—2x),(a>0,a≠1)
、且阎瘮(shù)y=loga (a>0, b>0, 且 a≠1)
、偾笏亩x域;②討論它的奇偶性; ③討論它的單調(diào)性。
⑷已知函數(shù)y=loga(ax—1) (a>0,a≠1),
、偾笏亩x域;②當x為何值時,函數(shù)值大于1;③討論它的單調(diào)性。
5、課堂教學(xué)設(shè)計說明
這節(jié)課是安排為習(xí)題課,主要利用對數(shù)函數(shù)的性質(zhì)解決一些問題,整個一堂課分兩個部分:
一 、比較數(shù)的大小,想通過這一部分的練習(xí),培養(yǎng)同學(xué)們構(gòu)造函數(shù)的思想和分類討論、數(shù)形結(jié)合的思想。
二、函數(shù)的定義域, 值 域及單調(diào)性,想通過這一部分的練習(xí),能使同學(xué)們重視求函數(shù)的定義域。因為學(xué)生在求函數(shù)的值域和單調(diào)區(qū)間時,往往不考慮函數(shù)的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學(xué)生做到想法正確,步驟清晰。為了調(diào)動學(xué)生的積極性,突出學(xué)生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學(xué)生獨立完成。但是,每一道題的解題過程,老師都應(yīng)該給以板書,這樣既讓學(xué)生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結(jié),以使好學(xué)生掌握地更完善,較差的學(xué)生也能夠跟上。
高一數(shù)學(xué)教案10
學(xué) 習(xí) 目 標
1明確空間直角坐標系是如何建立;明確空間中任意一點如何表示;
2 能夠在空間直角坐標系中求出點坐標
教 學(xué) 過 程
一 自 主 學(xué) 習(xí)
1平面直角坐標系建立方法,點坐標確定過程、表示方法?
2一個點在平面怎么表示?在空間呢?
3關(guān)于一些對稱點坐標求法
關(guān)于坐標平面 對稱點 ;
關(guān)于坐標平面 對稱點 ;
關(guān)于坐標平面 對稱點 ;
關(guān)于 軸對稱點 ;
關(guān)于 對軸稱點 ;
關(guān)于 軸對稱點 ;
二 師 生 互動
例1在長方體 中, , 寫出 四點坐標
討論:若以 點為原點,以射線 方向分別為 軸,建立空間直角坐標系,則各頂點坐標又是怎樣呢?
變式:已知 ,描出它在空間位置
例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標系,并確定各頂點坐標
練1 建立適當直角坐標系,確定棱長為3正四面體各頂點坐標
練2 已知 是棱長為2正方體, 分別為 和 中點,建立適當空間直角坐標系,試寫出圖中各中點坐標
三 鞏 固 練 習(xí)
1 關(guān)于空間直角坐標系敘述正確是( )
A 中 位置是可以互換
B空間直角坐標系中點與一個三元有序數(shù)組是一種一一對應(yīng)關(guān)系
C空間直角坐標系中三條坐標軸把空間分為八個部分
D某點在不同空間直角坐標系中坐標位置可以相同
2 已知點 ,則點 關(guān)于原點對稱點坐標為( )
A B C D
3 已知 三個頂點坐標分別為 ,則 重心坐標為( )
A B C D
4 已知 為平行四邊形,且 , 則頂點 坐標
5 方程 幾何意義是
四 課 后 反 思
五 課 后 鞏 固 練 習(xí)
1 在空間直角坐標系中,給定點 ,求它分別關(guān)于坐標平面,坐標軸和原點對稱點坐標
2 設(shè)有長方體 ,長、寬、高分別為 是線段 中點分別以 所在直線為 軸, 軸, 軸,建立空間直角坐標系
⑴求 坐標;
⑵求 坐標;
高一數(shù)學(xué)教案11
一、教材
《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點內(nèi)容之一。從知識體系上看,它既是點與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。
二、學(xué)情
學(xué)生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。
三、教學(xué)目標
(一)知識與技能目標
能夠準確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關(guān)系。
(二)過程與方法目標
經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價值觀目標
激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習(xí)慣。
四、教學(xué)重難點
(一)重點
用解析法研究直線與圓的位置關(guān)系。
(二)難點
體會用解析法解決問題的數(shù)學(xué)思想。
五、教學(xué)方法
根據(jù)本節(jié)課教材內(nèi)容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術(shù)工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機會,同時有利于發(fā)揮各層次學(xué)生的作用,教師始終堅持啟發(fā)式教學(xué)原則,設(shè)計一系列問題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動。
六、教學(xué)過程
(一)導(dǎo)入新課
教師借助多媒體創(chuàng)設(shè)泰坦尼克號的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?
教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡圖,即相交、相切、相離。
設(shè)計意圖:在已有的知識基礎(chǔ)上,提出新的問題,有利于保持學(xué)生知識結(jié)構(gòu)的連續(xù)性,同時開闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。
(二)新課教學(xué)——探究新知
教師提問如何判斷直線與圓的位置關(guān)系,學(xué)生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學(xué)生的鼓勵。
判斷方法:
(1)定義法:看直線與圓公共點個數(shù)
即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的.大小關(guān)系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進一步拋出疑問,對比兩種方法,由學(xué)生觀察實踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。
當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結(jié)——鞏固新知
為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:
可由方程組的解的不同情況來判斷:
當方程組有兩組實數(shù)解時,直線l與圓C相交;
當方程組有一組實數(shù)解時,直線l與圓C相切;
當方程組沒有實數(shù)解時,直線l與圓C相離。
活動:我將抽取兩位同學(xué)在黑板上扮演,并在巡視過程中對部分學(xué)生加以指導(dǎo)。最后對黑板上的兩名學(xué)生的解題過程加以分析完善。通過對基礎(chǔ)題的練習(xí),鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個學(xué)生獲得后續(xù)學(xué)習(xí)的信心。
(五)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會以口頭提問的方式:
(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問題的解決過程中運用了哪些數(shù)學(xué)思想?
設(shè)計意圖:啟發(fā)式的課堂小結(jié)方式能讓學(xué)生主動回顧本節(jié)課所學(xué)的知識點。也促使學(xué)生對知識網(wǎng)絡(luò)進行主動建構(gòu)。
作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關(guān)系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學(xué)生課外做進一步的探究,下一節(jié)課匯報。
七、板書設(shè)計
我的板書本著簡介、直觀、清晰的原則,這就是我的板書設(shè)計。
高一數(shù)學(xué)教案12
教學(xué)目標:①掌握對數(shù)函數(shù)的性質(zhì)。
、趹(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)
合函數(shù)的定義域、值 域及單調(diào)性。
、 注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高
解題能力。
教學(xué)重點與難點:對數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程設(shè)計:
、睆(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。
、查_始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學(xué)們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大小?
生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調(diào)性取決于底的.大。寒0
調(diào)遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調(diào)遞
增,所以loga5.1
板書:
解:Ⅰ)當0
∵5.1<5.9 loga5.1="">loga5.9
、)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學(xué)們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數(shù)值的大小常用方法:①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函
數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對數(shù)
函數(shù)圖象的位置關(guān)系來比大小。
2 函數(shù)的定義域, 值 域及單調(diào)性。
高一數(shù)學(xué)教案13
[三維目標]
一、知識與技能:
1、鞏固集合、子、交、并、補的概念、性質(zhì)和記號及它們之間的關(guān)系
2、了解集合的運算包含了集合表示法之間的.轉(zhuǎn)化及數(shù)學(xué)解題的一般思想
3、了解集合元素個數(shù)問題的討論說明
二、過程與方法
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法
三、情感態(tài)度與價值觀
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維
[教學(xué)重點、難點]:會正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實物投影儀
[教學(xué)方法]:講練結(jié)合法
[授課類型]:復(fù)習(xí)課
[課時安排]:1課時
[教學(xué)過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉(zhuǎn)化
3,集合的基本運算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數(shù)分為:有限集和無窮集兩類
高一數(shù)學(xué)教案14
教材:邏輯聯(lián)結(jié)詞
目的:要求學(xué)生了解復(fù)合命題的意義,并能指出一個復(fù)合命題是有哪些簡單命題與邏輯聯(lián)結(jié)詞,并能由簡單命題構(gòu)成含有邏輯聯(lián)結(jié)詞的復(fù)合命題。
過程:
一、提出課題:簡單邏輯、邏輯聯(lián)結(jié)詞
二、命題的概念:
例:125 ① 3是12的約數(shù) ② 0.5是整數(shù) ③
定義:可以判斷真假的語句叫命題。正確的叫真命題,錯誤的叫假命題。
如:①②是真命題,③是假命題
反例:3是12的約數(shù)嗎? x5 都不是命題
不涉及真假(問題) 無法判斷真假
上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。
三、復(fù)合命題:
1.定義:由簡單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復(fù)合命題。
2.例:
(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除
(2)菱形的.對角線互相 菱形的對角線互相垂直且菱形的
垂直且平分⑤ 對角線互相平分
(3)0.5非整數(shù)⑥ 非0.5是整數(shù)
觀察:形成概念:簡單命題在加上或且非這些邏輯聯(lián)結(jié)詞成復(fù)合命題。
3.其實,有些概念前面已遇到過
如:或:不等式 x2x60的解集 { x | x2或x3 }
且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }
四、復(fù)合命題的構(gòu)成形式
如果用 p, q, r, s表示命題,則復(fù)合命題的形式接觸過的有以下三種:
即: p或q (如 ④) 記作 pq
p且q (如 ⑤) 記作 pq
非p (命題的否定) (如 ⑥) 記作 p
小結(jié):1.命題 2.復(fù)合命題 3.復(fù)合命題的構(gòu)成形式
高一數(shù)學(xué)教案15
1.1 集合含義及其表示
教學(xué)目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
教學(xué)過程:
一、閱讀下列語句:
1) 全體自然數(shù)0,1,2,3,4,5,
2) 代數(shù)式 .
3) 拋物線 上所有的點
4) 今年本校高一(1)(或(2))班的全體學(xué)生
5) 本校實驗室的所有天平
6) 本班級全體高個子同學(xué)
7) 著名的科學(xué)家
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數(shù)分,可分為1)__________2)_________
三、集合中元素的三個性質(zhì):
1)___________2)___________3)_____________
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號:
1)非負整數(shù)集(或自然數(shù)集)______2)正整數(shù)集_____3)整數(shù)集_______
4)有理數(shù)集______5)實數(shù)集_____ 6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、 中三個元素可構(gòu)成某一個三角形的三邊長,那么此三角形一定不是 ( )
A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形
例2、用適當?shù)姆椒ū硎鞠铝屑,然后說出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù) 的`全體 值的集合;
3)函數(shù) 的全體自變量 的集合;
4)方程組 解的集合;
5)方程 解的集合;
6)不等式 的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號 或 填空:
1) ______Q ,0_____N, _____Z,0_____
2) ______ , _____
3)3_____ ,
4)設(shè) , , 則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(含邊界)的坐標的集合
課堂練習(xí):
例6、設(shè)含有三個實數(shù)的集合既可以表示為 ,也可以表示為 ,則 的值等于___________
例7、已知: ,若 中元素至多只有一個,求 的取值范圍。
思考題:數(shù)集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個元素;2)若 則集合A不可能是單元素集合。
小結(jié):
作業(yè) 班級 姓名 學(xué)號
1. 下列集合中,表示同一個集合的是 ( )
A . M= ,N= B. M= ,N=
C. M= ,N= D. M= ,N=
2. M= ,X= ,Y= , , .則 ( )
A . B. C. D.
3. 方程組 的解集是____________________.
4. 在(1)難解的題目,(2)方程 在實數(shù)集內(nèi)的解,(3)直角坐標平面內(nèi)第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
5. 設(shè)集合 A= , B= ,
C= , D= ,E= 。
其中有限集的個數(shù)是____________.
6. 設(shè) ,則集合 中所有元素的和為
7. 設(shè)x,y,z都是非零實數(shù),則用列舉法將 所有可能的值組成的集合表示為
8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,
若A= ,試用列舉法表示集合B=
9. 把下列集合用另一種方法表示出來:
(1) (2)
(3) (4)
10. 設(shè)a,b為整數(shù),把形如a+b 的一切數(shù)構(gòu)成的集合記為M,設(shè) ,試判斷x+y,x-y,xy是否屬于M,說明理由。
11. 已知集合A=
(1) 若A中只有一個元素,求a的值,并求出這個元素;
(2) 若A中至多只有一個元素,求a的取值集合。
12.若-3 ,求實數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會為您整理更多更好的文章,希望本文高一數(shù)學(xué)教案:集合含義及其表示能給您帶來幫助!
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案《函數(shù)概念》11-20
數(shù)學(xué)教案09-28
人教版數(shù)學(xué)教案08-27
《種花》數(shù)學(xué)教案08-16
數(shù)學(xué)教案《折扣》08-24
《等分》數(shù)學(xué)教案09-07
數(shù)學(xué)教案《分類》09-19
數(shù)學(xué)教案及反思07-28
《青蛙》數(shù)學(xué)教案08-15