初一的數(shù)學上冊教案
在教學工作者實際的教學活動中,總不可避免地需要編寫教案,教案有助于學生理解并掌握系統(tǒng)的知識。來參考自己需要的教案吧!以下是小編幫大家整理的初一的數(shù)學上冊教案,僅供參考,希望能夠幫助到大家。
初一的數(shù)學上冊教案1
初一上冊數(shù)學教案,歡迎各位老師和學生參考!
學習目標:1、理解有理數(shù)的絕對值和相反數(shù)的意義。
2、會求已知數(shù)的相反數(shù)和絕對值。
3、會用絕對值比較兩個負數(shù)的大小。
4、經歷將實際問題數(shù)學化的過程,感受數(shù)學與生活的聯(lián)系。
學習重點:1.會用絕對值比較兩個負數(shù)的大小。
2.會求已知數(shù)的相反數(shù)和絕對值。
學習難點:理解有理數(shù)的絕對值和相反數(shù)的意義。
學習過程:
一、創(chuàng)設情境
根據(jù)絕對值與相反數(shù)的意義填空:
1、
2、
-5的相反數(shù)是______,-10.5的相反數(shù)是______, 的相反數(shù)是______;
3、|0|=______,0的相反數(shù)是______。
二、探索感悟
1、議一議
(1)任意說出一個數(shù),說出它的絕對值、它的相反數(shù)。
(2)一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系?
2、想一想
(1)2與3哪個大?這兩個數(shù)的絕對值哪個大?
(2)-1與-4哪個大?這兩個數(shù)的絕對值哪個大?
(3)任意寫出兩個負數(shù),并說出這兩個負數(shù)哪個大?他們的絕對值哪個大?
(4)兩個有理數(shù)的大小與這兩個數(shù)的絕對值的大小有什么關系?
三.例題精講
例1. 求下列各數(shù)的絕對值:
+9,-16,-0.2,0.
求一個數(shù)的絕對值,首先要分清這個數(shù)是正數(shù)、負數(shù)還是0,然后才能正確地寫出它的絕對值。
議一議:(1)兩個數(shù)比較大小,絕對值大的那個數(shù)一定大嗎?
(2)數(shù)軸上的點的大小是如何排列的?
例2比較-10.12與-5.2的大小。
例3.求6、-6、14 、-14 的絕對值。
小節(jié)與思考:
這節(jié)課你有何收獲?
四.練習
1. 填空:
、 的符號是 ,絕對值是 ;
、10.5的符號是 ,絕對值是
、欠柺+號,絕對值是 的'數(shù)是
⑷符號是-號,絕對值是9的數(shù)是 ;
⑸符號是-號,絕對值是0.37的數(shù)是 .
2. 正式足球比賽時所用足球的質量有嚴格的規(guī)定,下表是6個足球的質量檢測結果(用正數(shù)記超過規(guī)定質量的克數(shù),用負數(shù)記不足規(guī)定質量的克數(shù)).
請指出哪個足球質量最好,為什么?
第1個第2個第3個第4個第5個第6個
-25-10+20+30+15-40
3.比較下面有理數(shù)的大小
(1)-0.7與-1.7 (2) (3) (4)-5與0
五、布置作業(yè):
P25 習題2.3 5
家庭作業(yè):《評價手冊》 《補充習題》
六、學后記/教后記
這篇初一上冊數(shù)學教案就為大家分享到這里了。希望對大家有所幫助!
初一的數(shù)學上冊教案2
《1.1正數(shù)和負數(shù)》教學設計
教學目標
1. 通過對“零”的意義的探討,進一步理解正數(shù)和負數(shù)的概念,能利用正負數(shù)正確表示相反意義的量(規(guī)定了向指定方向變化的量);
2. 進一步體驗正負數(shù)在生產生活中的廣泛應用,提高解決實際問題的能力;
3. 激發(fā)學生學習數(shù)學的興趣.
[教學重點與難點]
重點:深化對正負數(shù)概念的理解.
難點:正確理解和表示向指定方向變化的量
《1.1正數(shù)和負數(shù)》同步練習
1、下列說法正確的是( )
A、零 是正數(shù)不是負數(shù) B、零既不是正數(shù)也不是負數(shù)
C、零既是正數(shù)也是負數(shù) D、不是正數(shù)的數(shù)一定是負數(shù),不是負數(shù)的數(shù)一定是正數(shù)
2、向東行進-30米表示的意義是( )
A、向東行進30米 B、向東行進-30米
C、向西行進30米 D、向西行進-30米
3、零上13℃記作 +13℃,零下2℃可記作( )
A、2 B、-2 C、2℃ D、-2℃
4、某市20 15年元旦的最高氣溫為2℃,最低氣溫為-8℃,那么這天的最高 氣溫比 最低氣溫高( )
A、-10℃ B、-6℃ C、6℃ D、10℃
5、 中,正數(shù)有 ,負數(shù)有 .
6、如 果水位升高5m時水位變化記作+5m,那么水位下降3m時水位變化記作 m,
水位不升不降時水位變化記作 m.
7、在同一個問題中,分別用正數(shù)與負數(shù)表示的量具有 的意義.
8、甲、乙兩人同時從A地出發(fā), 如果向南走48m,記作+48m,則乙向北走32m,記為 ,
這時甲乙 兩人相距 m. .
9、某種藥品的說明書上標明保存溫度是(20±2)℃,由此可知在 ℃~ ℃范圍內保存才合適.
10、20xx年我國全年平均降水量比 上年減少24㎜,20xx年比上年增長8㎜,20xx年比上年減少20㎜。用正數(shù)和負數(shù)表示這三年我國全年平均降水量比上年的增長量.
11、如果把一個物體向右移動5m記作移動-5m,那么這個物體又移動+5m是什么 意思?這時物體離它兩次移動前的位置多 遠?
12、某老師把某一小組五名同學的成績簡記為:+10,-5,0,+8,-3,又知道記為0的`成績表 示90分,正數(shù)表示超過90分,則五名 同學的平均成績?yōu)槎嗌俜?
13、某地一天中午12時的氣溫是7℃,過5小時氣溫下降了4℃ ,又過7小時氣溫又下降了4℃,第二天0時的氣溫是多少?
《1.1正數(shù)和負數(shù)》同步練習含答案
19.體育課上,對初三(1)班的學生進行了仰臥起坐的測試,以能做28個為標準,超過的次數(shù)用正數(shù)來表示,不足的次數(shù)用負數(shù)來表示,其中10名 女學生成績如下:1、4、0、8、6、8、0、6、-5、-1.
(1)這10名女生的達標率為多少?
(2)沒達標的同學做了幾個仰臥起坐?
解:(1)這10名女生的達標率為8÷10 ×100%=80%.
(2)沒達標的同學做仰臥起坐的個數(shù)分別是23個和27個.
初一的數(shù)學上冊教案3
【教學目標】
1、經歷探索去括號法則的過程,了解去括號法則的依據(jù)。
2、會用去括號進行簡單的計算。
3、經歷觀察、歸納等教學活動,培養(yǎng)學生合作精神和探究問題的能力。
【重、難點】
理解去括號法則,熟練運用去括號法則。
【教學過程】
一、情境創(chuàng)設
在假期的勤工儉學活動中,小亮從報社以每份0。4元的價格購進a份報紙,以每份0。5元的價格賣出b份(b≤a)報紙,剩余的報紙以每份0。2元的價格退回報社,小亮贏利多少元?
思考:如何合并你算出的這個代數(shù)式中的同類項?
同步測試
1、七年級(1)班男生有a人,女生比男生的2倍少25人,男生比女生的人數(shù)多。試回答下列問題。(用代數(shù)式來表示,能化簡的化簡)
。1)女生有多少人?
。2)男生比女生多多少人?
。3)全班共有多少人?
測試
【拓展提優(yōu)】
14、如果A是三次多項式,B是三次多項式,那么A+B一定是()
A、六次多項式
B、次數(shù)不高于3的整式
C、三次多項式
D、次數(shù)不低于3的整式
15、多項式(xyz2—4yz—1)+(—3xy+z2xy—3)—(2xyz2+xy)的值()
A、與x、y、z均有關
B、與x有關,而與y、z無關
C、與x、y有關,而與z無關
D、與x、y、z均無關
16、已知a=20xxx+20xx,b=20xxx+20xx,c=20xxx+20xx,那么(a—b)2+(b—c)2+(c—a)2的值等于()
A、4 B、6 C、8 D、10
17、當x=1時,代數(shù)式mx3+nx+1的值為20xx,則當x=—1時,代數(shù)式mx3+nx+1的`值為()
A、—20xx B、—20xx C、—20xx D、—20xx
18、若M=3a2—2ab—4b2,N=4a2+5ab—b2,則8a2—13ab—15b2等于()
A、2M—N B、3M—2N C、4M—N D、2M—3N
19、把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m cm,寬為n cm)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示。則圖②中兩塊陰影部分的周長和是()
A、4m cm B、4n cm
C、2(m+n)cm D、4(m—n)cm
初一的數(shù)學上冊教案4
【教學目標】
知識與技能
1、理解三種統(tǒng)計圖各自的特點、
2、根據(jù)不同的問題選擇適當?shù)慕y(tǒng)計圖、
過程與方法
1、訓練學生作圖的技能、通過數(shù)據(jù)處理體會統(tǒng)計對決策的作用、
2、能夠根據(jù)實際問題,選擇適當?shù)慕y(tǒng)計圖清晰、有效地展示數(shù)據(jù)、
3、能從條形統(tǒng)計圖、折線統(tǒng)計圖、扇形統(tǒng)計圖中獲取信息、
情感、態(tài)度與價值觀
統(tǒng)計圖是展示數(shù)據(jù)的重要方法,它也經常出現(xiàn)在媒體上、通過對三種統(tǒng)計圖的認識、制作和選擇進一步培養(yǎng)學生對數(shù)據(jù)處理的能力及統(tǒng)計觀念,使學生深刻體會到數(shù)學和我們的社會、生活密切相關、
【教學重難點】
重點:
1、了解不同統(tǒng)計圖的特點、
2、根據(jù)實際問題選擇合適的統(tǒng)計圖,培養(yǎng)統(tǒng)計觀念、
難點:
1、根據(jù)實際問題選擇合適的統(tǒng)計圖、
2、制作三種統(tǒng)計圖并會從中獲取有用的信息、
【教學過程】
一、創(chuàng)設情境,引入新課
師:在我們日常所接觸的報刊、雜志及電視中,我們會經常見到一些統(tǒng)計圖、最近,我在一本百科全書上就遇到了這樣的情況:
我們知道地球上有人類生存至少已有200萬年的歷史、在相當長的一段時間內,地球上的人口數(shù)量并不是很多,因為出生的人口和死亡的人口大致持平、然而隨著農業(yè)耕作水平的不斷提高和醫(yī)療條件的不斷改善,世界人口開始急劇增加、目前,世界人口已超過70億,平均每4天要出生100萬以上的嬰兒、在世界上的許多地方,人口的過快增長已造成了一系列嚴重的問題,例如食品短缺和城市過分擁擠等、
下面我們來看兩幅統(tǒng)計圖,了解一下世界人口在各大洲的百分比分布及世界人口增長的狀況,也許能讓我們很好地了解世界人口的狀況、
課件出示相關圖示、
師:你會從世界人口增長圖中獲得哪些信息呢?在哪一段時間,世界人口的'增長率變化不大?在哪一段時間,世界人口就翻了一番?20xx年,世界人口預測將達到多少?
生:從世界人口增長圖中,我們可以看到公元1500年,人口達4.25億;在公元1800年以前世界人口增長率的情況變化不大;但從公元1800年起,世界人口就開始迅速增長、當時醫(yī)療條件得到了改善,糧食產量增加以及工業(yè)革命的影響,世界人口才開始迅速增長、
師:這位同學回答得很好!從世界人口增長的情況還能聯(lián)系到當時的歷史背景,看來我們的統(tǒng)計圖不僅是數(shù)據(jù)的展現(xiàn),而且還是歷史背景的再現(xiàn)、
生:從統(tǒng)計圖中,我們還看到1950年~1990年這段時間人口翻了一番,而且從圖上還可以預測出20xx年世界人口將達到85億、
師:我們再接著分析“世界人口的百分比分布圖”、這是一個什么形式的統(tǒng)計圖?
生:扇形統(tǒng)計圖,條形統(tǒng)計圖、
師:這個統(tǒng)計圖是在扇形統(tǒng)計圖的基礎上綜合改造得到的根據(jù)這個統(tǒng)計圖你又能得到何種信息呢?扇形統(tǒng)計圖反映的是世界人口在七大洲的分布嗎?聯(lián)系我們前兩節(jié)課學的內容,同學們可針對這個統(tǒng)計圖討論交流、
。ń處煷藭r可參與到學生的討論中,看同學們如何認識這個統(tǒng)計圖、從統(tǒng)計圖中得到的信息是否準確、根據(jù)學生討論交流的情況進行講評、)
生:扇形統(tǒng)計圖是地球陸地面積分布統(tǒng)計圖,條形統(tǒng)計圖才是相應各大洲人口占世界人口的百分比、由此我們可以看出人口在地球上的分布是不均勻的,像亞洲陸地面積占地球陸地總面積的29.3%,可人口卻占世界人口的63%;而北美洲陸地面積占地球陸地總面積的16.1%,人口只占世界人口的6.9%;南極洲陸地面積占地球陸地總面積的9、3%,那個地方卻由于氣候、地理位置等不同成為無人區(qū)、所以有些地區(qū)自然條件很差,人口很少,而有些地區(qū)土地肥沃,交通方便,人口相對集中、
師:很好!同學們已經能用數(shù)學中統(tǒng)計的眼光去觀察、分析我們生存的這個世界、現(xiàn)在我們再來看某家報刊公布的反映世界人口情況的數(shù)據(jù)、
二、講授新課
師:請同學們觀察下面的統(tǒng)計圖,你能盡可能的獲取信息嗎?
生1:從統(tǒng)計圖中,我們可知50年后,世界人口將達到90億、
生2:我們還可以看到從xxxx年到20xx年世界人口的變化情況、
生3:從xxxx年到xxxx年,世界人口由30億增加到40億;從xxxx年到xxxx年,世界人口由40億增加到50億;xxxx年到xxxx年由50億增加到60億、由此預測xxxx年到xxxx年世界人口從?
6、4、1統(tǒng)計圖的選擇:課后作業(yè)
。20xx·武漢)為了解學生課外閱讀的喜好,某校從八年級隨機抽取部分學生進行問卷調查,調查要求每人只選取一種喜歡的書籍、如果沒有喜歡的書籍,則作“其他”類統(tǒng)計、圖①與圖②是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖、以下結論不正確的是()
A、由這兩個統(tǒng)計圖可知喜歡“科普常識”的學生有90人
B、若該年級共有1 200名學生,則由這兩個統(tǒng)計圖可估計喜愛“科普常識”的學生約有360人
C、由這兩個統(tǒng)計圖不能確定喜歡“小說”的人數(shù)
D、在扇形統(tǒng)計圖中,“漫畫”所在扇形的圓心角為72°
《6、4統(tǒng)計圖的選擇》同步練習
基礎鞏固
1、(題型一)用條形統(tǒng)計圖表示的數(shù)據(jù)可以轉換成()
A、扇形統(tǒng)計圖
B、折線統(tǒng)計圖
C、扇形統(tǒng)計圖和折線統(tǒng)計圖
D、既不能表示成扇形統(tǒng)計圖也不能表示成折線統(tǒng)計圖
2、(題型三)甲、乙兩人參加某體育項目訓練,為了便于研究,把最后5次的訓練成績分別用實線和虛線連接起來,如圖6 —4—1,下面的結論錯誤的是()
A、乙的第2次成績與第5次成績相同
B、第3次測試,甲的成績與乙的成績相同
C、第4次測試,甲的成績比乙的成績多2分
D、在5次測試中,甲的成績都比乙的成績高
初一的數(shù)學上冊教案5
一、知識要點
本章的主要內容可以概括為有理數(shù)的概念與有理數(shù)的運算兩部分。有理數(shù)的概念可以利用數(shù)軸來認識、理解,同時,利用數(shù)軸又可以把這些概念串在一起。有理數(shù)的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。
基礎知識:
1、大于0的數(shù)叫做正數(shù)。
2、在正數(shù)前面加上負號“-”的數(shù)叫做負數(shù)。
3、0既不是正數(shù)也不是負數(shù)。
4、有理數(shù)(rationalnumber):正整數(shù)、負整數(shù)、0、正分數(shù)、負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。
5、數(shù)軸(numberaxis):通常,用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。
數(shù)軸滿足以下要求:
(1)在直線上任取一個點表示數(shù)0,這個點叫做原點(origin);
(2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;
(3)選取適當?shù)拈L度為單位長度。
6、相反數(shù)(oppositenumber):絕對值相等,只有負號不同的兩個數(shù)叫做互為相反數(shù)。
7、絕對值(absolutevalue)一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。記做|a|。
由絕對值的定義可得:|a-b|表示數(shù)軸上a點到b點的距離。
一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.
正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);兩個負數(shù),絕對值大的反而小。
8、有理數(shù)加法法則
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0.
(3)一個數(shù)同0相加,仍得這個數(shù)。
加法交換律:有理數(shù)的加法中,兩個數(shù)相加,交換加數(shù)的位置,和不變。表達式:a+b=b+a。
加法結合律:有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加或者先把后兩個數(shù)相加,和不變。
表達式:(a+b)+c=a+(b+c)
9、有理數(shù)減法法則
減去一個數(shù),等于加這個數(shù)的相反數(shù)。表達式:a-b=a+(-b)
10、有理數(shù)乘法法則
兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。
任何數(shù)同0相乘,都得0.
乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。表達式:ab=ba
乘法結合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。表達式:(ab)c=a(bc)
乘法分配律:一般地,一個數(shù)同兩個的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
表達式:a(b+c)=ab+ac
11、倒數(shù)
1除以一個數(shù)(零除外)的商,叫做這個數(shù)的倒數(shù)。如果兩個數(shù)互為倒數(shù),那么這兩個數(shù)的積等于1。
12、有理數(shù)除法法則:兩數(shù)相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0.
13、有理數(shù)的乘方:求n個相同因數(shù)的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponent)。
根據(jù)有理數(shù)的乘法法則可以得出:負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。
14、有理數(shù)的混合運算順序
(1)“先乘方,再乘除,最后加減”的順序進行;
(2)同級運算,從左到右進行;
(3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
15、科學技術法:把一個大于10的數(shù)表示成a﹡10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù)(即0
16、近似數(shù)(approximatenumber):
17、有理數(shù)可以寫成m/n(m、n是整數(shù),n≠0)的形式。另一方面,形如m/n(m、n是整數(shù),n≠0)的數(shù)都是有理數(shù)。所以有理數(shù)可以用m/n(m、n是整數(shù),n≠0)表示。
拓展知識:
1、數(shù)集:把一些數(shù)放在一起,就組成一個數(shù)的集合,簡稱數(shù)集。
一、(1)所有有理數(shù)組成的數(shù)集叫做有理數(shù)集;
二、(2)所有的整數(shù)組成的數(shù)集叫做整數(shù)集。
2、任何有理數(shù)都可以用數(shù)軸上的一個點來表示,體現(xiàn)了數(shù)形結合的`數(shù)學思想。
3、根據(jù)絕對值的幾何意義知道:|a|≥0,即對任何有理數(shù)a,它的絕對值是非負數(shù)。
4、比較兩個有理數(shù)大小的方法有:
(1)根據(jù)有理數(shù)在數(shù)軸上對應的點的位置直接比較;
(2)根據(jù)規(guī)定進行比較:兩個正數(shù);正數(shù)與零;負數(shù)與零;正數(shù)與負數(shù);兩個負數(shù),體現(xiàn)了分類討論的數(shù)學思想;
(3)做差法:a-b>0a>b;
(4)做商法:a/b>1,b>0a>b.
二、基礎訓練
選擇題
1、下列運算中正確的是().
A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9
2、下列各判斷句中錯誤的是()
A.數(shù)軸上原點的位置可以任意選定
B.數(shù)軸上與原點的距離等于個單位的點有兩個
C.與原點距離等于-2的點應當用原點左邊第2個單位的點來表示
D.數(shù)軸上無論怎樣靠近的兩個表示有理數(shù)的點之間,一定還存在著表示有理數(shù)的點。
3、、是有理數(shù),若>且,下列說法正確的是()
A.一定是正數(shù)B.一定是負數(shù)C.一定是正數(shù)D.一定是負數(shù)
4、兩數(shù)相加,如果比每個加數(shù)都小,那么這兩個數(shù)是()
A.同為正數(shù)B.同為負數(shù)C.一個正數(shù),一個負數(shù)D.0和一個負數(shù)
5、兩個非零有理數(shù)的和為零,則它們的商是()
A.0B.-1C.+1D.不能確定
6、一個數(shù)和它的倒數(shù)相等,則這個數(shù)是()
A.1B.-1C.±1D.±1和0
7、如果|a|=-a,下列成立的是()
A.a>0B.a<0c.a>0或a=0D.a<0或a=0
8、(-2)11+(-2)10的值是()
A.-2B.(-2)21C.0D.-210
9、已知4個礦泉水空瓶可以換礦泉水一瓶,現(xiàn)有16個礦泉水空瓶,若不交錢,最多可以喝礦泉水()
A.3瓶B.4瓶C.5瓶D.6瓶
10、在下列說法中,正確的個數(shù)是()
、湃魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示
⑵數(shù)軸上的每一個點都表示一個有理數(shù)
、侨魏斡欣頂(shù)的絕對值都不可能是負數(shù)
⑷每個有理數(shù)都有相反數(shù)
A、1B、2C、3D、4
11、如果一個數(shù)的相反數(shù)比它本身大,那么這個數(shù)為()
A、正數(shù)B、負數(shù)
C、整數(shù)D、不等于零的有理數(shù)
12、下列說法正確的是()
A、幾個有理數(shù)相乘,當因數(shù)有奇數(shù)個時,積為負;
B、幾個有理數(shù)相乘,當正因數(shù)有奇數(shù)個時,積為負;
C、幾個有理數(shù)相乘,當負因數(shù)有奇數(shù)個時,積為負;
D、幾個有理數(shù)相乘,當積為負數(shù)時,負因數(shù)有奇數(shù)個;
填空題
1、在有理數(shù)-7,,-(-1.43),,0,,-1.7321中,是整數(shù)的有_____________是負分數(shù)的有_______________。
2、一般地,設a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的____邊,與原點的距離是____個單位長度;表示數(shù)-a的點在原點的____邊,與原點的距離是____個單位長度。
3、如果一個數(shù)是6位整數(shù),用科學記數(shù)法表示它時,10的指數(shù)是_____;用科學記數(shù)法表示一個n位整數(shù),其中10的指數(shù)是___________.
4、實數(shù)a、b、c在數(shù)軸上的位置如圖:化簡|a-b|+|b-c|-|c-a|.
5、絕對值大于1而小于4的整數(shù)有_____________________________________,其和為___________.
6、若a、b互為相反數(shù),c、d互為倒數(shù),則(a+b)3-3(cd)4=________.
7、1-2+3-4+5-6+……+20xx-2002的值是____________.
8、若(a-1)2+|b+2|=0,那么a+b=_____________________.
9、平方等于它本身的有理數(shù)是___________,立方等于它本身的有理數(shù)是_____________.
10、用四舍五入法把3.1415926精確到千分位是,用科學記數(shù)法表示302400,應記為,近似數(shù)3.0×精確到位。
11、正數(shù)–a的絕對值為__________;負數(shù)–b的絕對值為________
12、甲乙兩數(shù)的和為-23.4,乙數(shù)為-8.1,甲比乙大
13、在數(shù)軸上表示兩個數(shù),的數(shù)總比的大。(用“左邊”“右邊”填空)
14、數(shù)軸上原點右邊4.8厘米處的點表示的有理數(shù)是32,那么,數(shù)軸左邊18厘米處的點表示的有理數(shù)是____________。
三、強化訓練
1、計算:1+2+3+…+20xx+2003=__________.
2、已知:若(a,b均為整數(shù))則a+b=
3、觀察下列等式,你會發(fā)現(xiàn)什么規(guī)律:,,,。。。請將你發(fā)現(xiàn)的規(guī)律用只含一個字母n(n為正整數(shù))的等式表示出來
4、已知,則___________
5、已知是整數(shù),是一個偶數(shù),則a是(奇,偶)
6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
7、在數(shù)1,2,3,…,50前添“+”或“-”,并求它們的和,所得結果的最小非負數(shù)是多少?請列出算式解答。
8、如果有理數(shù)a,b滿足∣ab-2∣+(1-b)2=0,試求+…+的值。
9、如果規(guī)定符號“*”的意義是a*b=ab/(a+b),求2*(-3)*4的值。
10、已知|x+1|=4,(y+2)2=4,求x+y的值。
11、投資股票是一種很重要的投資方式,但股市的風云變化又牽動了股民的心。
例:某股民在上星期五買進某種股票500股,每股60元,下表是本周每日該股票的漲跌情況(單位:元):
星期一二三四五
每股漲跌+4+4.5-1-2.5-6
第1章(1)星期三收盤時,每股是多少元?
第2章(2)本周內最高價是每股多少元?最低價是多少元?
第3章(3)已知買進股票是付了1.5‰的手續(xù)費,賣出時需付成交額1.5‰的手續(xù)費和1‰的交易費,如果在星期五收盤前將全部股票一次性地賣出,他的收益情況如何?
第4章(4)以買進的股價為0點,用折線統(tǒng)計圖表示本周該股的股價情況。
四、競賽訓練:
1、最小的非負有理數(shù)與最大的非正有理數(shù)的和是
2、乘積=
3、比較大。篈=,B=,則A B
4、滿足不等式104≤A≤105的整數(shù)A的個數(shù)是x×104+1,則x的值是( )
A、9 B、8 C、7 D、6
5、最小的一位數(shù)的質數(shù)與最小的兩位數(shù)的質數(shù)的積是( )
A、11 B、22 C、26 D、33
6、比較
7、計算:
8、計算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com
9、計算:
10、計算
11、計算1+3+5+7+…+1997+1999的值
12、計算1+5+52+53+…+599+5100的值.
13、有理數(shù)均不為0,且設試求代數(shù)式20xx之值。
14、已知a、b、c為實數(shù),且,求的值。
15、已知:。
16、解方程組。
17、若a、b、c為整數(shù),且,求的值。
1.2.1有理數(shù)
七年級上(1.1正數(shù)和負數(shù),1.2有理數(shù))
1.2有理數(shù)
初一的數(shù)學上冊教案6
教學目的
讓學生通過獨立思考,積極探索,從而發(fā)現(xiàn);初步體會數(shù)形結合思想的作用。
重點、難點
1.重點:通過分析圖形問題中的數(shù)量關系,建立方程解決問題。
2.難點:找出“等量關系”列出方程。
教學過程
一、復習提問
1.列一元一次方程解應用題的步驟是什么?
2.長方形的周長公式、面積公式。
二、新授
問題3.用一根長60厘米的鐵絲圍成一個長方形。
(1)使長方形的寬是長的專,求這個長方形的長和寬。
(2)使長方形的寬比長少4厘米,求這個長方形的面積。
(3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的`長方形嗎?
不是每道應用題都是直接設元,要認真分析題意,找出能表示整個題意的等量關系,再根據(jù)這個等量關系,確定如何設未知數(shù)。
(3)當長方形的長為18厘米,寬為12厘米時
長方形的面積=18×12=216(平方厘米)
當長方形的長為17厘米,寬為13厘米時
長方形的面積=221(平方厘米)
∴(1)中的長方形面積比(2)中的長方形面積小。
問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發(fā)現(xiàn)了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積呢?并加以驗證。
實際上,如果兩個正數(shù)的和不變,當這兩個數(shù)相等時,它們的積,通過以后的學習,我們就會知道其中的道理。
三、鞏固練習
教科書第14頁練習1、2。
第l題等量關系是:圓柱的體積=長方體的體積。
第2題等量關系是:玻璃杯中的水的體積十瓶內剩下的水的體積=原來整瓶水的體積。
四、小結
運用方程解決問題的關鍵是抓住等量關系,有些等量關系是隱藏的,不明顯,要聯(lián)系實際,積極探索,找出等量關系。
五、作業(yè)
教科書第16頁,習題6.3.1第1、2、3
初一的數(shù)學上冊教案7
學習目標:
1、理解有理數(shù)的絕對值和相反數(shù)的意義。
2、會求已知數(shù)的相反數(shù)和絕對值。
3、會用絕對值比較兩個負數(shù)的大小。
4、經歷將實際問題數(shù)學化的過程,感受數(shù)學與生活的聯(lián)系。
學習重點:
1.會用絕對值比較兩個負數(shù)的大小。
2.會求已知數(shù)的相反數(shù)和絕對值。
學習難點:
理解有理數(shù)的絕對值和相反數(shù)的意義。
學習過程:
一、創(chuàng)設情境
根據(jù)絕對值與相反數(shù)的意義填空:
-5的'相反數(shù)是,-的相反數(shù)是, 的相反數(shù)是;
|0|=,0的相反數(shù)是。
二、探索感悟
1、議一議
(1)任意說出一個數(shù),說出它的絕對值、它的相反數(shù)。
(2)一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系?
2、想一想
(1)2與3哪個大?這兩個數(shù)的絕對值哪個大?
(2)-1與-4哪個大?這兩個數(shù)的絕對值哪個大?
(3)任意寫出兩個負數(shù),并說出這兩個負數(shù)哪個大?他們的絕對值哪個大?
(4)兩個有理數(shù)的大小與這兩個數(shù)的絕對值的大小有什么關系?
三.例題精講
例1. 求下列各數(shù)的絕對值:
+9,-16,-,0.
求一個數(shù)的絕對值,首先要分清這個數(shù)是正數(shù)、負數(shù)還是0,然后才能正確地寫出它的絕對值。
議一議:(1)兩個數(shù)比較大小,絕對值大的那個數(shù)一定大嗎?
(2)數(shù)軸上的點的大小是如何排列的?
例2比較-與-的大小。
例3.求6、-6、14 、-14 的絕對值。
小節(jié)與思考:
這節(jié)課你有何收獲?
四.練習
1. 填空:
、 的符號是 ,絕對值是 ;
、频姆柺 ,絕對值是
、欠柺+號,絕對值是 的數(shù)是
⑷符號是-號,絕對值是9的數(shù)是 ;
⑸符號是-號,絕對值是的數(shù)是 .
2. 正式足球比賽時所用足球的質量有嚴格的規(guī)定,下表是6個足球的質量檢測結果(用正數(shù)記超過規(guī)定質量的克數(shù),用負數(shù)記不足規(guī)定質量的克數(shù)).
請指出哪個足球質量最好,為什么?
第1個第2個第3個第4個第5個第6個
-25-10+20+30+15-40
3.比較下面有理數(shù)的大小
(1)-與- (2) (3) (4)-5與0
五、布置作業(yè):
P25 習題 5
家庭作業(yè):《評價手冊》 《補充習題》
六、學后記/教后記
初一的數(shù)學上冊教案8
一:教材分析:
1:教材所處的地位和作用:
本課是在接一元一次方程的基礎上,講述一元一次方程的應用,讓學生通過審題,根據(jù)應用題的實際意義,找出相等關系,列出有關一元一次方程,是本節(jié)的重點和難點,同時也是本章節(jié)的重難點。本課講述一元一次方程的應用題,為學生初中階段學好必備的代數(shù),幾何的基礎知識與基本技能,解決實際問題起到啟蒙作用,以及對其他學科的學習的應用。在提高學生的能力,培養(yǎng)他們對數(shù)學的興趣
以及對他們進行思想教育方面有獨特的意義,同時,對后續(xù)教學內容起到奠基作用。
2:教育教學目標:
。1)知識目標:
(A)通過教學使學生了解應用題的一個重要步驟是根據(jù)題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。
。˙)通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數(shù),其余字母表示已知數(shù)的情況下,列出一元一次方程解簡單的應用題。
。2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯(lián)系實際的能力。
。3)思想目標:
通過對一元一次方程應用題的教學,讓學生初步認識體會到代數(shù)方法的優(yōu)越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數(shù)學家對一元一次方程的研究成果,激發(fā)學生熱愛中國共產黨,熱愛社會主義,決心為實現(xiàn)社會主義四個現(xiàn)代化而學好數(shù)學的思想;同時,通過理論聯(lián)系實際的方式,通過知識的應用,培養(yǎng)學生唯物主義的思想觀點。
3:重點,難點以及確定的依據(jù):
根據(jù)題意尋找和;差;倍;分問題的相等關系是本課的重點,根據(jù)題意列出一元一次方程是本課的難點,其理論依據(jù)是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯(lián)系實際的問題的理解難度大。
二:學情分析:(說學法)
1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數(shù)就直接進行列方程或在設未知數(shù)時,有單位卻忘記寫單位等。
2:學生在列方程解應用題時,可能存在三個方面的困難:
。1)抓不準相等關系;
。2)找出相等關系后不會列方程;
。3)習慣于用小學算術解法,得用代數(shù)方法分析應用題不適應,不知道要抓怎樣的相等關系。
3:學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。
4:學生在學習中可能習慣于用算術方法分析已知數(shù)與未知數(shù),未知數(shù)與已知數(shù)之間的關系,對于較為復雜的應用題無法找出等量關系,隨便行事,亂列式子。
5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。
三:教學策略:(說教法)
如何突出重點,突破難點,從而實現(xiàn)教學目標。我在教學過程中擬計劃進行如下操作:
1:“讀(看)——議——講”結合法
2:圖表分析法
3:教學過程中堅持啟發(fā)式教學的原則
教學的理論依據(jù)是:
1:必須先明確根據(jù)應用題題意列方程是重點,同時也是難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相等關系,并列出代數(shù)式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓學生大致了解列出一元一次方程解應用題的方法。
2:在教學過程中要求學生仔細審題,認真閱讀例題的內容提要,弄清題意,找出能夠表示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數(shù),再根據(jù)相等關系列出需要的代數(shù)式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數(shù)時,如有單位,必須讓學生寫在字母后,如例1中,不能把“設原來有X千克面粉”寫成“設原來有X”。另外,在列方程中,各代數(shù)式的單位應該是相同的,如例1中,代數(shù)式“X 字串7 ”“—15%X”“42500”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數(shù)設為未知數(shù),其余的數(shù)用已知數(shù)或含有已知數(shù)與未知數(shù)的代數(shù)式表示,從而列出方程。在例1中的相等關系比較簡單明顯,可通過啟發(fā)式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。
3:針對學生在列方程解應用題中可能存在的三個方面的困難,在教學過程中有意識加以解決,特別是學生抓不準相等關系這方面,可以讓學生通過表格,圖表等形式幫助學生找出相等關系表示成方程。如例1在分析過程中通過表格讓學生明了清楚直觀解決列方程的難點。
4:通過圖表對比使學生更直觀,理解更深刻,同時,降低了理論教學的難度和分量,提高課堂教學效益(教學手段)。
5:在課后習題的安排上適當讓學生通過模仿例題的思想方法,加深學生解應用題的能力,這主要由于學生剛剛入門,多進行模仿,習慣以后,再做與例題不一樣的習題,可以提高運用知識能力,同時讓學生進行一題多解,找出共同點,區(qū)別或最佳列法,以開闊學生的思路。
四:教學程序:
。ㄒ唬赫n堂結構:復習提問,導入講授新課,課堂練習,鞏固新課,布置作業(yè)五個部分。
(二):教學簡要過程:
1:復習提問:
。1):什么叫做等式?
。2):等式與方程之間有哪些關系?
。3):求X的15%的代數(shù)式。
(4):敘述代數(shù)式與方程的區(qū)別。
。ɡ碛墒牵和ㄟ^復習加深學生對等式,方程,代數(shù)式之間關系的.理解,有利于學生熟練正確根據(jù)題意列出一元一次方程,從而有利降低本節(jié)的難度。)
2:導入講授新課:
(1):教具:
一塊小黑板,抄212例1題目及相對應的空表格。
左邊右邊
(2):新課引述:
。3):講述課文212例1:
(目的是:要求學生認真讀懂題目,尋找反映題目的全部含義的相等關系,必須根據(jù)題目關系,切勿盲目性)通過理解啟發(fā)學生尋找出以下關系:原來重量—運出重量=剩余重量(A)(在指導學生分析尋找題意相等關系時,可能存在學生分析問題思路不同,會找出如下關系:原來重量=運出重量+剩余重量,原來重量—剩余重量=運出重量的相等關系來,這主要由于學生思路不同,得出的關系表面不同,但思路是正確的,應加以鼓勵培養(yǎng)學生這種發(fā)散思維能力。)
指導學生設原來重量為X千克。這里分析等式左邊:原來重量為X千克,運出重量為15%X千克,把以上填入表格左邊。 字串7 分析等式右邊:剩余重量為42500千克,填入表格右邊。
。康氖牵和ㄟ^分析使學生易看出,先弄懂題意,找出相等關系,再按照相等關系來設未知數(shù)和列代數(shù)式,有利于降低列方程解應用題的難度)
把以上左邊和右邊的代數(shù)式分別代入(A)中,同時要求學生注意方程的左邊和右邊的單位要一致,就可以列出方程。
同時要求學生在解答過程中勿漏寫“答”和“設”,且都不要漏寫單位。
結合解題過程向學生介紹一元一次應用題解法的一般步驟:
課本215黑體字
3:課堂練習:
課文216練習1,2題
。康氖牵鹤寣W生通過適當?shù)哪7吕}的解題思想方法從而加深對本課的內容的理解掌握。)
4:新課鞏固:
學生對本節(jié)內容進行要小結:
列方程解應用題著重于分析,抓住尋找相等關系。解一元一次應用題的一般步驟及注意事項。
。康模鹤寣W生加深對應用題的解法的認識和該注意事項的重視。)
5:作業(yè)布置:
課文221習題4-4(1)A組1,2,3題
。康模涸谟跈z驗學生對本節(jié)內容的理解和運用程度,以及實際接受情況,并促使學生進一步鞏固和掌握所學的內容。)
五:板書設計:
4*4一元一次方程的應用:
例題:小黑板出示例1題目解:設原來有X千克面粉,那么運
相等關系:原來重量—運出重量=剩余重量出了15%X千克,依題意,得
等式左邊:等式右邊:X—15%X=42500
原來重量為X千克,剩余重量為42500千克。解這個方程:
運出重量為15%X千克。85/100*X=42500
解一元一次方程的一般步驟:X=50000(千克)
小黑板出示課文215黑體字內容提要答:原來有50000千克面粉。
初一的數(shù)學上冊教案9
教學目標:
1、明白生活中存在著無數(shù)表示相反意義的量,能舉例說明;
2、能體會引進負數(shù)的必要性和意義,建立正數(shù)和負數(shù)的數(shù)感。
重點:通過列舉現(xiàn)實世界中的“相反意義的量”的例子來引進正數(shù)和負數(shù),要求學生理解正數(shù)和負數(shù)的意義,為以后通過實例引進有理數(shù)的大小比較、加法和乘法法則打基礎。
難點:對負數(shù)的意義的'理解。
教學過程:
一、知識導向:本節(jié)課是一個從小學過渡的知識點,主要是要抓緊在數(shù)范圍上擴充,對引進“負數(shù)”這一概念的必要性及意義的理解。
二、新課拆析:1、回顧小學中有關數(shù)的范圍及數(shù)的分類,指出小學中的“數(shù)”是為了滿足生產和生活的需要而產生發(fā)展起來的。如:0,1,2,3,…,,
2、能讓學生舉例出更多的有關生活中表示相反意義的量,能發(fā)現(xiàn)事物之間存在的對立面。
如:汽車向東行駛3千米和向西行駛2千米
溫度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列舉的表示相反意義量,我們也許就會發(fā)現(xiàn):如果只用原來所學過的數(shù)很難區(qū)分具有相反意義的量。
一般地,對于具有相反意義的量,我們可把其中一種意義的量規(guī)定為正的,用過去學過的數(shù)表示;把與它意義相反的量規(guī)定為負的,用過去學過的數(shù)(零除外)前面放上一個“—”號來表示。
如:在表示溫度時,通常規(guī)定零上為“正”,零下為“負”即零上10°C表示為10°C,零下5°C表示為-5°C概括:我們把這一種新數(shù),叫做負數(shù),如:-3,-45,…過去學過的那些數(shù)(零除外)叫做正數(shù),如:1,2.2…零既不是正數(shù),也不是負數(shù)例:下面各數(shù)中,哪些數(shù)是正數(shù),哪些數(shù)是負數(shù),1,2.3,-5.5,68,-,0,-11,+123,…
三、階梯訓練:P18練習:1,2,3,4。
四、知識小結:
從本節(jié)課所學的內容中,應能從數(shù)的角度來區(qū)分小學與初中的異同點,通過運用發(fā)現(xiàn)相反意義量,能理解引進“負數(shù)”的必要性及其意義。
五、作業(yè)鞏固:
1、每個同學分別舉出5個生活中表示相反意義量的的例子;并用正、負數(shù)來表示; 2、分別舉出幾個正數(shù)與負數(shù)(最少6個)。 3、P20習題2.1:1題。
初一的數(shù)學上冊教案10
【教學目標】
知識與技能
理解合并同類項的法則,會用合并同類項法則解一元一次方程,并在此基礎上探索一元一次方程的一般解法.
過程與方法
通過探索合并同類項法則的過程培養(yǎng)學生觀察、思考、歸納的能力,積累數(shù)學探究活動的經驗.
情感、態(tài)度與價值觀
通過探索合并同類項法則并進一步探索一元一次方程一般解法的過程,感受數(shù)學活動的.創(chuàng)造性,激發(fā)學生學習數(shù)學的興趣.
【教學重難點】
重點:合并同類項法則的探索及應用.
難點:合并同類項法則的理解和靈活運用.
【教學過程】
一、溫故知新
師:你們知道等式的基本性質是什么嗎?
學生回答,教師點評.
師:利用等式的基本性質解方程:
(1)2x+3=x+4;(2)5x+4=5-3x.
學生解答,然后集體訂正.
問題展示:
問題1:某校三年共購買計算機140臺,去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,前年這個學校購買了多少臺計算機?
師:設前年購買計算機x臺,那么去年購買計算機多少臺?
生:2x臺.
師:今年購買計算機多少臺?
生:4x臺.
師:題目中的等量關系是什么?
師生共同分析,列出方程:x+2x+4x=140.
用框圖表示出解這個方程的具體過程:
x+2x+4x=140
合并同類項
7x=140
系數(shù)化為1
x=20
二、例題講解
解下列方程:
(1)2x-x=6-8;
(2)7x-2.5x+3x-1.5x=-15×4-6×3.
解:(1)合并同類項,得-x=-2,
系數(shù)化為1,得x=4.
(2)合并同類項,得6x=-78,
系數(shù)化為1,得x=-13.
三、鞏固練習
解下列方程:
1.3x+4x-2x=18-7.
2.y-y+y=×6-1.
四、課堂小結
師:這節(jié)課你學習了哪些知識?獲得了哪些經驗?
學生發(fā)言,教師予以補充.
初一的數(shù)學上冊教案11
學習目標
1.認識簡單的幾何體棱柱、圓柱、圓錐、球等,掌握其中的相同之處和不同之處,會對其進行簡單分類.
2.認識點、線、面的運動會產生什么幾何體.
學習重點
認識一些基本的幾何體,認識幾何體是什么運動形成的
學習難點
描述幾何體的`特征,對幾何體,進行分類,認識點、線、面的運動能產生什么幾何體.
行為提示:創(chuàng)景設疑,幫助學生知道本節(jié)課學什么.
行為提示:讓學生通過閱讀教材后,獨立完成“自學互研”的所有內容,并要求做完了的小組長督促組員迅速完成.
說明:學生通過觀察、分析,掌握棱柱的分類方法,并能用自己的語言描述棱柱與圓柱的相同點與不同點.情景導入生成問題
先閱讀教材第2頁“想一想”上方的圖片內容,并完成書中所提出的問題.
說明學生很容易找出以前學過的幾何體以及與筆筒形狀類似的物體,有利于學生從直觀形象認識上升到抽象理性認識.
歸納結論與筆筒形狀類似的幾何體稱為棱柱。
初一的數(shù)學上冊教案12
【學習目標】
1.使學生能說出相反數(shù)的意義
2.使學生能求出已知數(shù)的相反數(shù)
3.使學生能根據(jù)相反數(shù)的意思進行化簡
【學習過程】
【情景創(chuàng)設】
回憶上節(jié)課的情境,小明從學校出發(fā)沿東西大街走了0.5千米,在數(shù)軸上表示出他的位置。點A,點B即是小明到達的位置。
觀察A,B兩點位置及共到原點的距離,你有什么發(fā)現(xiàn)嗎?
《數(shù)軸》專題練習
1.(4)班在一次聯(lián)歡活動中,把全班分成5個隊參加活動,游戲結束后,5個隊的得分如下:
A隊:-50分;B隊:150分;C隊:-300分;D隊:0分;E隊:100分.
(1)將5個隊按由低分到高分的順序排序;
(2)把每個隊的.得分標在數(shù)軸上,并標上代表該隊的字母;
(3)從數(shù)軸上看A隊與B隊相差多少分?C隊與E隊呢?
《2.4數(shù)軸》同步測試
1下列說法中錯誤的是( )
A.一個正數(shù)的絕對值一定是正數(shù)
B.任何數(shù)的絕對值都是正數(shù)
C.一個負數(shù)的絕對值一定是正數(shù)
D.任何數(shù)的絕對值都不是負數(shù)
22017·海安縣期中絕對值大于2且不大于5的整數(shù)有________個.
3某檢修小組乘坐一輛汽車沿公路檢修供電線路,約定前進為正,后退為負,他們從出發(fā)到收工返回時,走過的路程記錄如下(單位:km):+5,-3,+7,-1,-4,+8,-12.求他們從出發(fā)到收工返回時,總共行駛的路程.
初一的數(shù)學上冊教案13
教學目標
知識目標:
經歷解方程的基本思路是把“復雜”轉化為“簡單”,把“未知”轉化為“已知”的過程, 進一步理解并掌握如何去分母的解題方法。
能力目標:
通過解方程的方法、步驟的靈活多樣,培養(yǎng)學生分析問題、解決問題的能力。
1.了解方程的`解,解方程的概念;
2.掌握運用等式的基本性質解簡單的一元一次方程;
3.經歷體會解方程中的轉化思想.
解一元一次方程:同步練習
1.(20xx?大連)方程2x+3=7的解是( )
A.x=5 B.x=4 C.x=3.5 D.x=2
【分析】方程移項合并,把x系數(shù)化為1,即可求出解.
【解答】解:2x+3=7, 移項合并得:2x=4, 解得:x=2,
故選D
【點評】此題考查了一元一次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.
《4.2解一元一次方程》測試
1.解方程|x|-2=0,可以按下面的步驟進行:
解:當x≥0時,得x-2=0.
解這個方程,得x=2;
當x<0時,得-x-2=0.
解這個方程,得x=-2.
所以原方程的解是x=2或x=-2.
仿照上述的解題過程,解方程|x-2|-1=0.
初一的數(shù)學上冊教案14
教學目標:
知識與技能
1.掌握直角三角形的判別條件,并能進行簡單應用;
2.進一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗,培養(yǎng)從實際問題抽象出數(shù)學問題的能力,建立數(shù)學模型.
3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.
情感態(tài)度與價值觀
敢于面對數(shù)學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數(shù)學的應用價值,發(fā)展運用數(shù)學的信心和能力,初步形成積極參與數(shù)學活動的意識.
教學重點
運用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.
教學難點
會辨析哪些問題應用哪個結論.
課前準備
標有單位長度的細繩、三角板、量角器、題篇
教學過程:
復習引入:
請學生復述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?
創(chuàng)設問題情景:由課前準備好的`一組學生以小品的形式演示教材第9頁古埃及造直角的方法.
這樣做得到的是一個直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
、比绾蝸砼袛?(用直角三角板檢驗)
這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關系?
就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)
、怖^續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:
5,12,13;6,8,10;8,15,17.
(1)這三組數(shù)都滿足a2+b2=c2嗎?
(2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
、持苯侨切闻卸ǘɡ恚喝绻切蔚娜呴La,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).
、蠢1一個零件的形狀如左圖所示,按規(guī)定這個零件中∠A和∠DBC都應為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?
隨堂練習:
⒈下列幾組數(shù)能否作為直角三角形的三邊長?說說你的理由.
、9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22.
⒉已知?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角.
、乘倪呅蜛BCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積.
、戳曨}1.3
課堂小結:
、敝苯侨切闻卸ǘɡ恚喝绻切蔚娜呴La,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
、矟M足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).勾股數(shù)擴大相同倍數(shù)后,仍為勾股數(shù).
初一的數(shù)學上冊教案15
一、學習目標
(1)在具體情境中進一步理解字母表示數(shù)的意義,通過判斷,并理解代數(shù)式的意義。
(2) 初步掌握列代數(shù)式的方法,能根據(jù)要求正確列出相應的代數(shù)式。
(3)通過學習,培養(yǎng)學生正確規(guī)范的數(shù)學語言表達能力。
二、學習重點難點
代數(shù)式的意義以及正確地列出代數(shù)式。
三、學習過程
1.(1)我們知道用字母可以表示數(shù),請你填空。
、倨吣昙壱话嘤心猩20人,女生n人,那么共有學生_________人。
、谫I蘋果s千克用了4元錢,買1千克蘋果需要________元。
③長方形的長和寬分別是a厘米和b厘米,正方形的邊長是c厘米,長方形與正方形面積的和是_______。
(2) 上述各問題中出現(xiàn)的如20+n、 、4n、(ab+c2)以及以前學習的n-m、2(a+b)、ab+ac等式子,都稱為代數(shù)式。
(3)指出下列哪些是代數(shù)式:_______________________ (填序號)
(1) m+5 (2)2x-y+1 (3) 2+3+5 (4) 3
(5) (m-5n)2 (6) abc (7)a (8) 2+x=3
2.(1)例1 填空:
、偌讛(shù)用a表示,乙數(shù)比甲數(shù)大3,那么乙數(shù)是______________.
、诩讛(shù)用a表示,甲、乙兩數(shù)的和為10,那么乙數(shù)是______________.
③甲數(shù)用a表示,甲數(shù)是乙數(shù)的5倍,那么乙數(shù)是______________.
、芗讛(shù)用a表示, 乙數(shù)比甲數(shù)的平方少2,那么乙數(shù)是______________.
、蓍L方形的長和寬分別為a cm、b cm .則該長方形的周長為________cm
(1)自主歸納。 結合上面所有練習中出現(xiàn)的問題,能否總結出代數(shù)式的書寫格式?
(2)下列代數(shù)式中符合書寫要求的是________ ,并說明理由。
(1)x×y×2 (2) a + b 厘米 (3) 2(b-a) (4) (a + b) ÷c (4.像“x的3倍與y的2倍的和”、“x與5的差的3倍”等用文字表述數(shù)量關系的.語言稱為自然語言(或普通語言);
像3x+2y與3(x-5)等用代數(shù)式表述數(shù)量關系的語言稱為數(shù)學語言。
5.將下列代數(shù)式用自然語言表示: (1) (a+b)2 (2) a2 -b2
6.請同學們將下面的代數(shù)式賦予它實際意義。a-b ___________4x_________________________
四、課時小結:
這節(jié)課我學會了: 存在問題的地方:
五、課堂檢測
1.列代數(shù)式表示(注意規(guī)范書寫)
① x的 與a 的和是____________;② a,b?數(shù)和的平方減去a、b兩數(shù)的立方差____________;
、 長方形的周長為20cm,它的寬為xcm,那么它的面積為____________ ;
④ 某商品的利潤為a元,利潤率為1
《3.2代數(shù)式》測試
3.(題型三)某汽車的油箱里儲油20 L,如果該汽車每行駛1 km耗油0.04 L,那么當汽車行駛n(n≤500)km時,油箱中還剩汽油______L.
4.(題型二)已知x2+x-1=0 ,則3x2+3x-5=________.
《3.2第2課時代數(shù)式求值》同步練習
解題突破
、莞鶕(jù)設計的程序進行計算,找到循環(huán)的規(guī)律,根據(jù)規(guī)律推導計算.
命題點 3 利用整體法求值 [熱度:96%]
10.⑥已知-x+2y=5,則5(x-2y)2-3(x-2y)-60的值是( )
A.80 B.10 C.210 D.40
解題突破
、尴韧ㄟ^改變符號變換已知代數(shù)式,再利用整體代入法進行計算.
【初一的數(shù)學上冊教案】相關文章:
初一數(shù)學上冊的教案12-23
初一上冊的數(shù)學教案11-13
初一數(shù)學上冊教案12-18
初一數(shù)學上冊教案12-13
初一的數(shù)學上冊教案精選15篇11-11
初一的數(shù)學上冊教案15篇11-10
初一的數(shù)學上冊教案(15篇)11-11
初一上冊數(shù)學教案01-04
初一數(shù)學上冊的教案(15篇)12-24