- 相關(guān)推薦
高一數(shù)學(xué)等差數(shù)列教案(通用11篇)
作為一名教職工,很有必要精心設(shè)計(jì)一份教案,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那么教案應(yīng)該怎么寫才合適呢?下面是小編為大家整理的高一數(shù)學(xué)等差數(shù)列教案,僅供參考,希望能夠幫助到大家。
高一數(shù)學(xué)等差數(shù)列教案 1
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題.
教學(xué)重難點(diǎn)
掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題.
教學(xué)過程
等比數(shù)列性質(zhì)請(qǐng)同學(xué)們類比得出.
【方法規(guī)律】
1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的.運(yùn)算題.方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法.
2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個(gè)實(shí)數(shù)
a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)
3、在求等差數(shù)列前n項(xiàng)和的(小)值時(shí),常用函數(shù)的思想和方法加以解決.
【示范舉例】
例1:(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為.
(2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=.
例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù).
例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng).
高一數(shù)學(xué)等差數(shù)列教案 2
一、等差數(shù)列
1、定義
注:“從第二項(xiàng)起”及
“同一常數(shù)”用紅色粉筆標(biāo)注
二、等差數(shù)列的通項(xiàng)公式
。ㄒ唬├}與練習(xí)
通過練習(xí)2和3 引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識(shí)等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識(shí)創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對(duì)問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。
(二)新課探究
1、由引入自然的給出等差數(shù)列的概念:
如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列, 這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。強(qiáng)調(diào):
、 “從第二項(xiàng)起”滿足條件;
、诠頳一定是由后項(xiàng)減前項(xiàng)所得;
、勖恳豁(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,歸納出數(shù)學(xué)表達(dá)式:
an+1—an=d (n≥1) ;h4z+0"6vG
同時(shí)為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
1) 9 ,8,7,6,5,4,……;√ d=—1
2) 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3) 0,0,0,0,0,0,……。; √ d=0
4) 1,2,3,2,3,4,……;x
5) 1,0,1,0,1,……x
其中第一個(gè)數(shù)列公差<0,>0,第三個(gè)數(shù)列公差=0
由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0
2、第二個(gè)重點(diǎn)部分為等差數(shù)列的通項(xiàng)公式
在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項(xiàng) ,公差d,由學(xué)生研究分組討論a4 的通項(xiàng)公式。通過總結(jié)a4的通項(xiàng)公式由學(xué)生猜想a40的通項(xiàng)公式,進(jìn)而歸納an的通項(xiàng)公式。整個(gè)過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識(shí)又化解了教學(xué)難點(diǎn)。
若一等差數(shù)列{an }的首項(xiàng)是a1,公差是d,
則據(jù)其定義可得:
a2 — a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:
an=a1+(n—1)d
此時(shí)指出: 這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法——————迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an+1 – an=d
將這(n—1)個(gè)等式左右兩邊分別相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1) 當(dāng)n=1時(shí),(1)也成立, 所以對(duì)一切n∈N﹡,上面的公式都成立 因此它就是等差數(shù)列{an}的通項(xiàng)公式。 在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。 利用等差數(shù)列概念啟發(fā)學(xué)生寫出n—1個(gè)等式。 對(duì)照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n—1個(gè)等式相加。證出通項(xiàng)公式。 在這里通過該知識(shí)點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求 接著舉例說(shuō)明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n—1)x2 , 即an=2n—1 以此來(lái)鞏固等差數(shù)列通項(xiàng)公式運(yùn)用 同時(shí)要求畫出該數(shù)列圖象,由此說(shuō)明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無(wú)窮多個(gè)孤立點(diǎn)。用函數(shù)的思想來(lái)研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。 (三)應(yīng)用舉例 這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對(duì)通項(xiàng)公式含義的理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問題的能力。通過例1和例2向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的a1、d、n、an這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另一部分量。 例1 (1)求等差數(shù)列8,5,2,…的第20項(xiàng);第30項(xiàng);第40項(xiàng) (2)—401是不是等差數(shù)列—5,—9,—13,…的項(xiàng)?如果是,是第幾項(xiàng)? 在第一問中我添加了計(jì)算第30項(xiàng)和第40項(xiàng)以加強(qiáng)鞏固等差數(shù)列通項(xiàng)公式;第二問實(shí)際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式an 例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項(xiàng)a1與公差d。 在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對(duì)通項(xiàng)公式的鞏固 例3 是一個(gè)實(shí)際建模問題 建造房屋時(shí)要設(shè)計(jì)樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計(jì)為等高的16級(jí)臺(tái)階,問每級(jí)臺(tái)階高為多少米? 這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級(jí)臺(tái)階“等高”使學(xué)生想到每級(jí)臺(tái)階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型——————等差數(shù)列:(學(xué)生討論分析,分別演板,教師評(píng)析問題。問題可能出現(xiàn)在:項(xiàng)數(shù)學(xué)生認(rèn)為是16項(xiàng),應(yīng)明確a1為第2層的樓底離地面的`高度,a2表示第一級(jí)臺(tái)階離地面的高度而第16級(jí)臺(tái)階離地面高度為a17,可用展示實(shí)際樓梯圖以化解難點(diǎn)) 設(shè)置此題的目的: 1。加強(qiáng)同學(xué)們對(duì)應(yīng)用題的綜合分析能力, 2。通過數(shù)學(xué)實(shí)際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣; 3。再者通過數(shù)學(xué)實(shí)例展示了“從實(shí)際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說(shuō)明實(shí)際問題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法 。ㄋ模┓答伨毩(xí) 1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對(duì)學(xué)生進(jìn)行基本技能訓(xùn)練。 2、書上例3)梯子的最高一級(jí)寬33c,最低一級(jí)寬110c,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。計(jì)算中間各級(jí)的寬度。 目的:對(duì)學(xué)生加強(qiáng)建模思想訓(xùn)練。 3、若數(shù)例{an} 是等差數(shù)列,若 bn = an ,(為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列 此題是對(duì)學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時(shí)強(qiáng)化了等差數(shù)列的概念。 。ㄎ澹w納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲) 1。等差數(shù)列的概念及數(shù)學(xué)表達(dá)式. 強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù) 2。等差數(shù)列的通項(xiàng)公式 an= a1+(n—1) d會(huì)知三求一 3.用“數(shù)學(xué)建!彼枷敕椒ń鉀Q實(shí)際問題 (六)布置作業(yè) 必做題:課本P114 習(xí)題3.2第2,6 題 選做題:已知等差數(shù)列{an}的首項(xiàng)a1= —24,從第10項(xiàng)開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求) 五、板書設(shè)計(jì) 在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。 一、教學(xué)內(nèi)容分析 本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。 數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。 二、學(xué)生學(xué)習(xí)情況分析 教學(xué)內(nèi)容針對(duì)的是高二的學(xué)生,經(jīng)過高中一年的學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也可能有一部分學(xué)生的基礎(chǔ)較弱,所以在授課時(shí)要從具體的生活實(shí)例出發(fā),使學(xué)生產(chǎn)生學(xué)習(xí)的興趣,注重引導(dǎo)、啟發(fā)學(xué)生的積極主動(dòng)的去學(xué)習(xí)數(shù)學(xué),從而促進(jìn)思維能力的進(jìn)一步提高。 三、設(shè)計(jì)思想 1.教法 、耪T導(dǎo)思維法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性。 、品纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性。 、侵v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn)。 2.學(xué)法 引導(dǎo)學(xué)生首先從四個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、女子舉重獎(jiǎng)項(xiàng)設(shè)置問題、水庫(kù)水位問題、儲(chǔ)蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法。 用多種方法對(duì)等差數(shù)列的.通項(xiàng)公式進(jìn)行推導(dǎo)。 在引導(dǎo)分析時(shí),留出“空白”,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。 四、教學(xué)目標(biāo) 通過本節(jié)課的學(xué)習(xí)使學(xué)生能理解并掌握等差數(shù)列的概念,能用定義判斷一個(gè)數(shù)列是否為等差數(shù)列,引導(dǎo)學(xué)生了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想,掌握等差數(shù)列的通項(xiàng)公式與前 n 項(xiàng)和公式,并能解決簡(jiǎn)單的實(shí)際問題;并在此過程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力,在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力。 五、教學(xué)重點(diǎn)與難點(diǎn) 重點(diǎn): 、俚炔顢(shù)列的概念。 ②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。 難點(diǎn): ①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義。 ②理解等差數(shù)列是一種函數(shù)模型。 關(guān)鍵: 等差數(shù)列概念的理解及由此得到的“性質(zhì)”的方法。 六、教學(xué)過程(略) 【教學(xué)目標(biāo)】 1. 知識(shí)與技能 (1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列: (2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過程: (3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡(jiǎn)單問題。 2.過程與方法 在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。 3.情感、態(tài)度與價(jià)值觀 通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。 【教學(xué)重點(diǎn)】 、俚炔顢(shù)列的概念; ②等差數(shù)列的通項(xiàng)公式 【教學(xué)難點(diǎn)】 、倮斫獾炔顢(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義; 、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過程. 【學(xué)情分析】 我所教學(xué)的`學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展. 【設(shè)計(jì)思路】 1.教法 、賳l(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性. 、诜纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性. 、壑v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn). 2.學(xué)法 引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、水庫(kù)水位問題、儲(chǔ)蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法. 【教學(xué)過程】 一:創(chuàng)設(shè)情境,引入新課 1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么? 2.水庫(kù)管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚.如果一個(gè)水庫(kù)的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位(單位:m)組成一個(gè)什么數(shù)列? 3.我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金x(1+利率x存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列? 教師:以上三個(gè)問題中的數(shù)蘊(yùn)涵著三列數(shù). 學(xué)生: 1:0,5,10,15,20,25,…. 2:18,15.5,13,10.5,8,5.5. 3:10072,10144,10216,10288,10360. (設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力. 二:觀察歸納,形成定義 、0,5,10,15,20,25,…. 、18,15.5,13,10.5,8,5.5. 、10072,10144,10216,10288,10360. 思考1上述數(shù)列有什么共同特點(diǎn)? 思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎? 思考3你能將上述的文字語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言嗎? 教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念. 學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定. 教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義. (設(shè)計(jì)意圖:通過對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開始抓住:“從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).) 三:舉一反三,鞏固定義 1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d. (1)1,1,1,1,1; (2)1,0,1,0,1; (3)2,1,0,-1,-2; (4)4,7,10,13,16. 教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問題. 注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 . (設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用). 2思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么? (設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法) 四:利用定義,導(dǎo)出通項(xiàng) 1.已知等差數(shù)列:8,5,2,…,求第200項(xiàng)? 2.已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢? 教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法. (設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力) 五:應(yīng)用通項(xiàng),解決問題 1判斷100是不是等差數(shù)列2, 9,16,…的項(xiàng)?如果是,是第幾項(xiàng)? 2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an. 3求等差數(shù)列 3,7,11,…的第4項(xiàng)和第10項(xiàng) 教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況. 學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式 (設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問題.) 六:反饋練習(xí):教材13頁(yè)練習(xí)1 七:歸納總結(jié): 1.一個(gè)定義: 等差數(shù)列的定義及定義表達(dá)式 2.一個(gè)公式: 等差數(shù)列的通項(xiàng)公式 3.二個(gè)應(yīng)用: 定義和通項(xiàng)公式的應(yīng)用 教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,最后教師給出補(bǔ)充 (設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.) 【設(shè)計(jì)反思】 本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率. 教學(xué)目標(biāo) 1、通過教與學(xué)的互動(dòng),使學(xué)生加深對(duì)等差數(shù)列通項(xiàng)公式的認(rèn)識(shí),能參與編擬一些簡(jiǎn)單的問題,并解決這些問題; 2、利用通項(xiàng)公式求等差數(shù)列的項(xiàng)、項(xiàng)數(shù)、公差、首項(xiàng),使學(xué)生進(jìn)一步體會(huì)方程思想; 3、通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的興趣。 教學(xué)重點(diǎn),難點(diǎn) 教學(xué)重點(diǎn)是通項(xiàng)公式的認(rèn)識(shí);教學(xué)難點(diǎn)是對(duì)公式的靈活運(yùn)用. 教學(xué)用具 實(shí)物投影儀,多媒體軟件,電腦。 教學(xué)方法 研探式。 教學(xué)過程 一、復(fù)習(xí)提問 前一節(jié)課我們學(xué)習(xí)了等差數(shù)列的概念、表示法,請(qǐng)同學(xué)們回憶等差數(shù)列的定義,其表示法都有哪些? 等差數(shù)列的概念是從相鄰兩項(xiàng)的關(guān)系加以定義的,這個(gè)關(guān)系用遞推公式來(lái)表示比較簡(jiǎn)單,但我們要圍繞通項(xiàng)公式作進(jìn)一步的理解與應(yīng)用。 二、主體設(shè)計(jì) 通項(xiàng)公式反映了項(xiàng)與項(xiàng)數(shù)之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項(xiàng)與公差確定后,數(shù)列的每一項(xiàng)便確定了,可以求指定的項(xiàng)(即已知求)。找學(xué)生試舉一例如:“已知等差數(shù)列中,首項(xiàng),公差,求!边@是通項(xiàng)公式的簡(jiǎn)單應(yīng)用,由學(xué)生解答后,要求每個(gè)學(xué)生出一些運(yùn)用等差數(shù)列通項(xiàng)公式的題目,包括正用、反用與變用,簡(jiǎn)單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來(lái),分類投影在屏幕上。 1、方程思想的運(yùn)用 。1)已知等差數(shù)列中,首項(xiàng),公差,則-397是該數(shù)列的第______項(xiàng)。 。2)已知等差數(shù)列中,首項(xiàng),則公差 。3)已知等差數(shù)列中,公差,則首項(xiàng) 這一類問題先由學(xué)生解決,之后教師點(diǎn)評(píng),四個(gè)量,在一個(gè)等式中,運(yùn)用方程的思想方法,已知其中三個(gè)量的值,可以求得第四個(gè)量。 2、基本量方法的使用 。1)已知等差數(shù)列中,求的值。 (2)已知等差數(shù)列中,求。 若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(最好請(qǐng)出題者、解題者概括):因?yàn)橐阎獥l件可以化為關(guān)于和的'二元方程組,所以這些等差數(shù)列是確定的,由和寫出通項(xiàng)公式,便可歸結(jié)為前一類問題。解決這類問題只需把兩個(gè)條件(等式)化為關(guān)于和的二元方程組,以求得和,和稱作基本量。 教師提出新的問題,已知等差數(shù)列的一個(gè)條件(等式),能否確定一個(gè)等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個(gè)條件可得到關(guān)于和的二元方程,這是一個(gè)和的制約關(guān)系,從這個(gè)關(guān)系可以得到什么結(jié)論?舉例說(shuō)明(例題可由學(xué)生或教師給出,視具體情況而定)。 如:已知等差數(shù)列中,… 由條件可得即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項(xiàng)的值么?能否與兩項(xiàng)有關(guān)?多項(xiàng)有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題 。3)已知等差數(shù)列中,求;…。 類似的還有 。4)已知等差數(shù)列中,求的值。 以上屬于對(duì)數(shù)列的項(xiàng)進(jìn)行定量的研究,有無(wú)定性的判斷? 3、研究等差數(shù)列的單調(diào)性,考察隨項(xiàng)數(shù)的變化規(guī)律。著重考慮的情況。此時(shí)是的一次函數(shù),其單調(diào)性取決于的符號(hào),由學(xué)生敘述結(jié)果。這個(gè)結(jié)果與考察相鄰兩項(xiàng)的差所得結(jié)果是一致的 4、研究項(xiàng)的符號(hào) 這是為研究等差數(shù)列前項(xiàng)和的最值所做的準(zhǔn)備工作。可配備的題目如 。1)已知數(shù)列的通項(xiàng)公式為,問數(shù)列從第幾項(xiàng)開始小于0? 。2)等差數(shù)列從第________項(xiàng)起以后每項(xiàng)均為負(fù)數(shù)。 三、小結(jié) 1、用方程思想認(rèn)識(shí)等差數(shù)列通項(xiàng)公式; 2、用函數(shù)思想解決等差數(shù)列問題。 四。板書設(shè)計(jì) 等差數(shù)列通項(xiàng)公式 1、方程思想的運(yùn)用 2、基本量方法的使用 【教學(xué)目標(biāo)】 一、知識(shí)與技能 1.掌握等差數(shù)列前n項(xiàng)和公式; 2.體會(huì)等差數(shù)列前n項(xiàng)和公式的推導(dǎo)過程; 3.會(huì)簡(jiǎn)單運(yùn)用等差數(shù)列前n項(xiàng)和公式。 二、過程與方法 1. 通過對(duì)等差數(shù)列前n項(xiàng)和公式的推導(dǎo),體會(huì)倒序相加求和的思想方法; 2. 通過公式的運(yùn)用體會(huì)方程的思想。 三、情感態(tài)度與價(jià)值觀 結(jié)合具體模型,將教材知識(shí)和實(shí)際生活聯(lián)系起來(lái),使學(xué)生感受數(shù)學(xué)的實(shí)用性,有效激發(fā)學(xué)習(xí)興趣,并通過對(duì)等差數(shù)列求和歷史的了解,滲透數(shù)學(xué)史和數(shù)學(xué)文化。 【教學(xué)重點(diǎn)】 等差數(shù)列前n項(xiàng)和公式的推導(dǎo)和應(yīng)用。 【教學(xué)難點(diǎn)】 在等差數(shù)列前n項(xiàng)和公式的推導(dǎo)過程中體會(huì)倒序相加的思想方法。 【重點(diǎn)、難點(diǎn)解決策略】 本課在設(shè)計(jì)上采用了由特殊到一般、從具體到抽象的教學(xué)策略。利用數(shù)形結(jié)合、類比歸納的思想,層層深入,通過學(xué)生自主探究、分析、整理出推導(dǎo)公式的思路,同時(shí),借助多媒體的直觀演示,幫助學(xué)生理解,師生互動(dòng)、講練結(jié)合,從而突出重點(diǎn)、突破教學(xué)難點(diǎn)。 【教學(xué)用具】 多媒體軟件,電腦 【教學(xué)過程】 一、明確數(shù)列前n項(xiàng)和的定義,確定本節(jié)課中心任務(wù): 本節(jié)課我們來(lái)學(xué)習(xí)《等差數(shù)列的前n項(xiàng)和》,那么什么叫數(shù)列的前n項(xiàng)和呢,對(duì)于數(shù)列{an}:a1,a2,a3,…,an,…我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項(xiàng)和,用sn表示,記sn=a1+a2+a3+…+an, 如S1 =a1, S7 =a1+a2+a3+……+a7,下面我們來(lái)共同探究如何求等差數(shù)列的前n項(xiàng)和。 二、問題牽引,探究發(fā)現(xiàn) 問題1:(播放媒體資料情景引入)印度泰姬陵世界七大奇跡之一。傳說(shuō)陵寢中有一個(gè)三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見圖),奢靡之程度,可見一斑。你知道這個(gè)圖案一共花了多少圓寶石嗎? 即: S100=1+2+3+······+100=? 著名數(shù)學(xué)家高斯小時(shí)候就會(huì)算,聞名于世;那么小高斯是如何快速地得出答案的呢?請(qǐng)同學(xué)們思考高斯方法的特點(diǎn),適合類型和方法本質(zhì)。 特點(diǎn): 首項(xiàng)與末項(xiàng)的和: 1+100=101, 第2項(xiàng)與倒數(shù)第2項(xiàng)的和: 2+99 =101, 第3項(xiàng)與倒數(shù)第3項(xiàng)的和: 3+98 =101, · · · · · · 第50項(xiàng)與倒數(shù)第50項(xiàng)的和: 50+51=101, 于是所求的和是: 101x50=5050。 1+2+3+ ······ +100= 101x50 = 5050 同學(xué)們討論后總結(jié)發(fā)言:等差數(shù)列項(xiàng)數(shù)為偶數(shù)相加時(shí)首尾配對(duì),變不同數(shù)的加法運(yùn)算為相同數(shù)的乘法運(yùn)算大大提高效率。高斯的方法很妙,如果等差數(shù)列的項(xiàng)數(shù)為奇數(shù)時(shí)怎么辦呢? 探索與發(fā)現(xiàn)1:假如讓你計(jì)算從第一層到第21層的珠寶數(shù),高斯的首尾配對(duì)法行嗎? 即計(jì)算S21=1+2+3+ ······ +21的值,在這個(gè)過程中讓學(xué)生發(fā)現(xiàn)當(dāng)項(xiàng)數(shù)為奇數(shù)時(shí),首尾配對(duì)出現(xiàn)了問題,通過動(dòng)畫演示引導(dǎo)幫助學(xué)生思考解決問題的辦法,為引出倒序相加法做鋪墊。 把“全等三角形”倒置,與原圖構(gòu)成平行四邊形。平行四邊形中的每行寶石的個(gè)數(shù)均為21個(gè),共21行。有什么啟發(fā)? 1+ 2 + 3 + …… +20 +21 21 + 20 + 19 + …… + 2 +1 S21=1+2+3+…+21=(21+1)x21÷2=231 這個(gè)方法也很好,那么項(xiàng)數(shù)為偶數(shù)這個(gè)方法還行嗎? 探索與發(fā)現(xiàn)2:第5層到12層一共有多少顆圓寶石? 學(xué)生探究的同時(shí)通過動(dòng)畫演示幫助學(xué)生思考剛才的方法是否同樣可行?請(qǐng)同學(xué)們自主探究一下(老師演示動(dòng)畫幫助學(xué)生) S8=5+6+7+8+9+10+11+12= 【設(shè)計(jì)意圖】進(jìn)一步引導(dǎo)學(xué)生探究項(xiàng)數(shù)為偶數(shù)的等差數(shù)列求和時(shí)倒序相加是否可行。從而得出倒序相加法適合任意項(xiàng)數(shù)的等差數(shù)列求和,最終確立倒序相加的思想和方法! 好,這樣我們就找到了一個(gè)好方法——倒序相加法!現(xiàn)在來(lái)試一試如何求下面這個(gè)等差數(shù)列的前n項(xiàng)和? 問題2:等差數(shù)列1,2,3,…,n, … 的前n項(xiàng)和怎么求呢? 解:(根據(jù)前面的學(xué)習(xí),請(qǐng)學(xué)生自主思考獨(dú)立完成) 【設(shè)計(jì)意圖】強(qiáng)化倒序相加法的理解和運(yùn)用,為更一般的等差數(shù)列求和打下基礎(chǔ)。 至此同學(xué)們已經(jīng)掌握了倒序相加法,相信大家可以推導(dǎo)更一般的等差數(shù)列前n項(xiàng)和公式了。 問題3:對(duì)于一般的等差數(shù)列{an}首項(xiàng)為a1,公差為d,如何推導(dǎo)它的前n項(xiàng)和sn公式呢? 即求 =a1+a2+a3+……+an= ∴(1)+(2)可得:2 ∴ 公式變形:將代入可得: 【設(shè)計(jì)意圖】學(xué)生在前面的探究基礎(chǔ)上水到渠成順理成章很快就可以推導(dǎo)出一般等差數(shù)列的前n項(xiàng)和公式,從而完成本節(jié)課的中心任務(wù)。在這個(gè)過程中放手讓學(xué)生自主推導(dǎo),同時(shí)也復(fù)習(xí)等差數(shù)列的通項(xiàng)公式和基本性質(zhì)。 三、公式的認(rèn)識(shí)與理解: 1、根據(jù)前面的推導(dǎo)可知等差數(shù)列求和的兩個(gè)公式為: 。ü揭唬 。ü蕉 探究: 1、(1)相同點(diǎn): 都需知道a1與n; 。2)不同點(diǎn): 第一個(gè)還需知道an ,第二個(gè)還需知道d; (3)明確若a1,d,n,an中已知三個(gè)量就可求Sn。 2、兩個(gè)公式共涉及a1, d, n, an,Sn五個(gè)量,“知三”可“求二”。 2、探索與發(fā)現(xiàn)3:等差數(shù)列前n項(xiàng)和公式與梯形面積公式有什么聯(lián)系? 用梯形面積公式記憶等差數(shù)列前 n 項(xiàng)和公式,這里對(duì)圖形進(jìn)行了割、補(bǔ)兩種處理,對(duì)應(yīng)著等差數(shù)列 n 項(xiàng)和的兩個(gè)公式.,請(qǐng)學(xué)生聯(lián)想思考總結(jié)來(lái)有助于記憶。 【設(shè)計(jì)意圖】幫助學(xué)生類比聯(lián)想,拓展思維,增加興趣,強(qiáng)化記憶 四、公式應(yīng)用、講練結(jié)合 1、練一練: 有了兩個(gè)公式,請(qǐng)同學(xué)們來(lái)練一練,看誰(shuí)做的快做的對(duì)! 根據(jù)下列各題中的條件,求相應(yīng)的等差數(shù)列{an}的Sn : (1)a1=5,an=95,n=10 解:500 。2)a1=100,d=-2,n=50 解: 【設(shè)計(jì)意圖】熟悉并強(qiáng)化公式的理解和應(yīng)用,進(jìn)一步鞏固“知三求二”。 下面我們來(lái)看兩個(gè)例題: 2、例題1: 2000年11月14日教育部下發(fā)了<<關(guān)于在中小學(xué)實(shí)施“校校通”工程的通知>>.某市據(jù)此提出了實(shí)施“校校通”工程的總目標(biāo):從2001年起用10年時(shí)間,在全市中小學(xué)建成不同標(biāo)準(zhǔn)的校園網(wǎng). 據(jù)測(cè)算,2001年該市用于“校校通”工程的經(jīng)費(fèi)為500萬(wàn)元.為了保證工程的順利實(shí)施,計(jì)劃每年投入的資金都比上一年增加50萬(wàn)元.那么從2001年起的'未來(lái)10年內(nèi),該市在“校校通”工程中的總投入是多少? 解:設(shè)從2001年起第n年投入的資金為an,根據(jù)題意,數(shù)列{an}是一個(gè)等差數(shù)列,其中 a1=500, d=50 那么,到2010年(n=10),投入的資金總額為 答: 從2001年起的未來(lái)10年內(nèi),該市在“校校通”工程中的總投入是7250萬(wàn)元。 【設(shè)計(jì)意圖】讓學(xué)生體會(huì)數(shù)列知識(shí)在生活中的應(yīng)用及簡(jiǎn)單的數(shù)學(xué)建模思想方法。 3、例題2: 已知一個(gè)等差數(shù)列{an}的前10項(xiàng)的和是310,前20項(xiàng)的和是1220,由這些條件可以確定這個(gè)等差數(shù)列的前n項(xiàng)和的公式嗎? 解: 法1:由題意知 , 代入公式得: 解得, 法2:由題意知 , 代入公式得: , 即, 、冖俚,故 由得故 【設(shè)計(jì)意圖】掌握并能靈活應(yīng)用公式并體會(huì)方程的思想方法。 4、反饋達(dá)標(biāo): 練習(xí)一:在等差數(shù)列{an}中,a1=20, an=54,sn =999,求n. 解:由解n=27 練習(xí)2: 已知{an}為等差數(shù)列,,求公差。 解:由公式得 即d=2 【設(shè)計(jì)意圖】進(jìn)一強(qiáng)化求和公式的靈活應(yīng)用及化歸的思想(化歸到首項(xiàng)和公差這兩個(gè)基本元)。 五、歸納總結(jié) 分享收獲:(活躍課堂氣氛,鼓勵(lì)學(xué)生大膽發(fā)言,培養(yǎng)總結(jié)和表達(dá)能力) 1、倒序相加法求和的思想及應(yīng)用; 2、等差數(shù)列前n項(xiàng)和公式的推導(dǎo)過程; 3、掌握等差數(shù)列的兩個(gè)求和公式,; 4、前n項(xiàng)和公式的靈活應(yīng)用及方程的思想。 ………… 六、作業(yè)布置: 。ㄒ唬⿻孀鳂I(yè): 1.已知等差數(shù)列{an},其中d=2,n=15, an =-10,求a1及sn。 2.在a,b之間插入10個(gè)數(shù),使它們同這兩個(gè)數(shù)成等差數(shù)列,求這10個(gè)數(shù)的和。 。ǘ┱n后思考: 思考:等差數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法除了倒序相加法還有沒有其它方法呢? 【設(shè)計(jì)意圖】通過布置書面作業(yè)鞏固所學(xué)知識(shí)及方法,同時(shí)通過布置課后思考題來(lái)延伸知識(shí)拓展思維。 附:板書設(shè)計(jì) 等差數(shù)列的前n項(xiàng)和 1、數(shù)列前n項(xiàng)和的定義: 2、等差數(shù)列前n項(xiàng)和公式的推導(dǎo): 3、公式的認(rèn)識(shí)與理解: 公式一: 公式二: 四:例題及解答: 議練活動(dòng): [教學(xué)目標(biāo)] 1.知識(shí)與技能目標(biāo):掌握等差數(shù)列的概念;理解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項(xiàng)公式解決相應(yīng)的一些問題。 2.過程與方法目標(biāo):讓學(xué)生親身經(jīng)歷“從特殊入手,研究對(duì)象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的強(qiáng)化練習(xí),培養(yǎng)學(xué)生分析問題解決問題的能力。 3.情感態(tài)度與價(jià)值觀目標(biāo):通過對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生逐步養(yǎng)成細(xì)心觀察、認(rèn)真分析、及時(shí)總結(jié)的好習(xí)慣。 [教學(xué)重難點(diǎn)] 1.教學(xué)重點(diǎn):等差數(shù)列的概念的理解,通項(xiàng)公式的推導(dǎo)及應(yīng)用。 2.教學(xué)難點(diǎn): (1)對(duì)等差數(shù)列中“等差”兩字的把握; (2)等差數(shù)列通項(xiàng)公式的推導(dǎo)。 [教學(xué)過程] 一.課題引入 創(chuàng)設(shè)情境引入課題:(這節(jié)課我們將學(xué)習(xí)一類特殊的數(shù)列,下面我們看這樣一些例子) 二、新課探究 (一)等差數(shù)列的定義 1、等差數(shù)列的定義 如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。 (1)定義中的'關(guān)健詞有哪些? (2)公差d是哪兩個(gè)數(shù)的差? (二)等差數(shù)列的通項(xiàng)公式 探究1:等差數(shù)列的通項(xiàng)公式(求法一) 如果等差數(shù)列首項(xiàng)是,公差是,那么這個(gè)等差數(shù)列如何表示?呢? 根據(jù)等差數(shù)列的定義可得: 因此等差數(shù)列的通項(xiàng)公式就是:, 探究2:等差數(shù)列的通項(xiàng)公式(求法二) 根據(jù)等差數(shù)列的定義可得: 將以上-1個(gè)式子相加得等差數(shù)列的通項(xiàng)公式就是:, 三、應(yīng)用與探索 例1、(1)求等差數(shù)列8,5,2,…,的第20項(xiàng)。 (2)等差數(shù)列-5,-9,-13,…,的第幾項(xiàng)是–401? (2)、分析:要判斷-401是不是數(shù)列的項(xiàng),關(guān)鍵是求出通項(xiàng)公式,并判斷是否存在正整數(shù)n,使得成立,實(shí)質(zhì)上是要求方程的正整數(shù)解。 例2、在等差數(shù)列中,已知=10,=31,求首項(xiàng)與公差d. 解:由,得。 在應(yīng)用等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d過程中,對(duì)an,a1,n,d這四個(gè)變量,知道其中三個(gè)量就可以求余下的一個(gè)量,這是一種方程的思想。 鞏固練習(xí) 1.等差數(shù)列{an}的前三項(xiàng)依次為a-6,-3a-5,-10a-1,則a=()。 2.一張?zhí)葑幼罡咭患?jí)寬33cm,最低一級(jí)寬110cm,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。求公差d。 四、小結(jié) 1.等差數(shù)列的通項(xiàng)公式: 公差; 2.等差數(shù)列的計(jì)算問題,通常知道其中三個(gè)量就可以利用通項(xiàng)公式an=a1+(n-1)d,求余下的一個(gè)量; 3.判斷一個(gè)數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可; 4.利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學(xué)系規(guī)律或解決數(shù)學(xué)問題. 五、作業(yè): 1、必做題:課本第40頁(yè)習(xí)題2.2第1,3,5題 2、選做題:如何以最快的速度求:1+2+3+???+100= 教學(xué)目的: 1.明確等差數(shù)列的定義,掌握等差數(shù)列的通項(xiàng)公式。 2.會(huì)解決知道中的三個(gè),求另外一個(gè)的問題。 教學(xué)重點(diǎn): 等差數(shù)列的概念,等差數(shù)列的通項(xiàng)公式。 教學(xué)難點(diǎn): 等差數(shù)列的性質(zhì) 教學(xué)過程: 一、復(fù)習(xí)引入:(課件第一頁(yè)) 二、講解新課: 1.等差數(shù)列:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的 差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示)。 。ㄕn件第二頁(yè)) ⑴.公差d一定是由后項(xiàng)減前項(xiàng)所得,而不能用前項(xiàng)減后項(xiàng)來(lái)求; 、疲畬(duì)于數(shù)列{ },若 - =d (與n無(wú)關(guān)的數(shù)或字母),n≥2,n∈n ,則此數(shù)列是等差數(shù)列,d 為公差。 2.等差數(shù)列的通項(xiàng)公式: 【或 】等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得。若一等差數(shù)列 的首項(xiàng)是 ,公差是d,則據(jù)其定義可得: 即: 即: 即: …… 由此歸納等差數(shù)列的通項(xiàng)公式可得: (課件第二頁(yè)) 第二通項(xiàng)公式 (課件第二頁(yè)) 三、例題講解 例1 ⑴求等差數(shù)列8,5,2…的第20項(xiàng)(課本p111) ⑵ -401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)? 例2 在等差數(shù)列 中,已知 , ,求 , , 例3將一個(gè)等差數(shù)列的通項(xiàng)公式輸入計(jì)算器數(shù)列 中,設(shè)數(shù)列的第s項(xiàng)和第t項(xiàng)分別為 和 ,計(jì)算 的`值,你能發(fā)現(xiàn)什么結(jié)論?并證明你的結(jié)論。 小結(jié):①這就是第二通項(xiàng)公式的變形,②幾何特征,直線的斜率 例4 梯子最高一級(jí)寬33cm,最低一級(jí)寬為110cm,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列,計(jì)算中間各級(jí)的寬度。(課本p112例3) 例5 已知數(shù)列{ }的通項(xiàng)公式 ,其中 、 是常數(shù),那么這個(gè)數(shù)列是否一定是等差數(shù)列?若是,首項(xiàng)與公差分別是什么?(課本p113例4) 分析:由等差數(shù)列的定義,要判定 是不是等差數(shù)列,只要看 (n≥2)是不是一個(gè)與n無(wú)關(guān)的常數(shù)。 注:①若p=0,則{ }是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,… ②若p≠0, 則{ }是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(diǎn)均在一次函數(shù)y=px+q的圖象上,一次項(xiàng)的系數(shù)是公差,直線在y軸上的截距為q. ③數(shù)列{ }為等差數(shù)列的充要條件是其通項(xiàng) =pn+q (p、q是常數(shù))。稱其為第3通項(xiàng)公式④判斷數(shù)列是否是等差數(shù)列的方法是否滿足3個(gè)通項(xiàng)公式中的一個(gè)。 例6.成等差數(shù)列的四個(gè)數(shù)的和為26,第二項(xiàng)與第三項(xiàng)之積為40,求這四個(gè)數(shù). 四、練習(xí): 1.(1)求等差數(shù)列3,7,11,……的第4項(xiàng)與第10項(xiàng). 。2)求等差數(shù)列10,8,6,……的第20項(xiàng). 。3)100是不是等差數(shù)列2,9,16,……的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,說(shuō)明理由. 。4)-20是不是等差數(shù)列0,-3 ,-7,……的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,說(shuō)明理由. 2.在等差數(shù)列{ }中, 。1)已知 =10, =19,求 與d; 五、課后作業(yè): 習(xí)題3.2 1(2),(4) 2.(2), 3, 4, 5, 6 . 8. 9. 一、設(shè)計(jì)思想 數(shù)學(xué)是思維的體操,是培養(yǎng)學(xué)生分析問題、解決問題的能力及創(chuàng)造能力的載體,新課程倡導(dǎo):強(qiáng)調(diào)過程,強(qiáng)調(diào)學(xué)生探索新知識(shí)的經(jīng)歷和獲得新知的體驗(yàn),不能在讓教學(xué)脫離學(xué)生的內(nèi)心感受,必須讓學(xué)生追求過程的體驗(yàn)。基于以上認(rèn)識(shí),在設(shè)計(jì)本節(jié)課時(shí),教師所考慮的不是簡(jiǎn)單告訴學(xué)生等差數(shù)列的定義和通項(xiàng)公式,而是創(chuàng)造一些數(shù)學(xué)情境,讓學(xué)生自己去發(fā)現(xiàn)、證明。在這個(gè)過程中,學(xué)生在課堂上的主體地位得到充分發(fā)揮,極大的激發(fā)了學(xué)生的學(xué)習(xí)興趣,也提高了他們提出問題解決問題的能力,培養(yǎng)了他們的創(chuàng)造力。這正是新課程所倡導(dǎo)的數(shù)學(xué)理念。 本節(jié)課借助多媒體輔助手段,創(chuàng)設(shè)問題的情境,讓探究式教學(xué)走進(jìn)課堂,保障學(xué)生的主體地位,喚醒學(xué)生的主體意識(shí),發(fā)展學(xué)生的主體能力,塑造學(xué)生的主體人格,讓學(xué)生在參與中學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)合作、學(xué)會(huì)創(chuàng)新。 二、教材分析 高中數(shù)學(xué)必修五第二章第二節(jié),等差數(shù)列,兩課時(shí)內(nèi)容,本節(jié)是第一課時(shí)。研究等差數(shù)列的定義、通項(xiàng)公式的推導(dǎo),借助生活中豐富的典型實(shí)例,讓學(xué)生通過分析、推理、歸納等活動(dòng)過程,從中了解和體驗(yàn)等差數(shù)列的定義和通項(xiàng)公式。通過本節(jié)課的學(xué)習(xí)要求理解等差數(shù)列的概念,掌握等差數(shù)列的通項(xiàng)公式,并且了解等差數(shù)列與一次函數(shù)的關(guān)系。 本節(jié)是第二章的基礎(chǔ),為以后學(xué)習(xí)等差數(shù)列的求和、等比數(shù)列奠定基礎(chǔ),是本章的重點(diǎn)內(nèi)容。在高考中也是重點(diǎn)考察內(nèi)容之一,并且在實(shí)際生活中有著廣泛的應(yīng)用,它起著承前啟后的作用。同時(shí)也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。等差數(shù)列是學(xué)生探究特殊數(shù)列的開始,它對(duì)后續(xù)內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上,還是在方法上都具有積極的意義。 三、學(xué)情分析 學(xué)生已經(jīng)具有一定的.理性分析能力和概括能力,且對(duì)數(shù)列的知識(shí)有了初步的接觸和認(rèn)識(shí),對(duì)數(shù)學(xué)公式的運(yùn)用已具備一定的技能,已經(jīng)熟悉由觀察到抽象的數(shù)學(xué)活動(dòng)過程,對(duì)函數(shù)、方程思想體會(huì)逐漸深刻。他們的思維正從屬于經(jīng)驗(yàn)性的邏輯思維向抽象思維發(fā)展,但仍需要依賴一定的具體形象的經(jīng)驗(yàn)材料來(lái)理解抽象的邏輯關(guān)系。同時(shí)思維的嚴(yán)密性還有待加強(qiáng)。 四、教學(xué)目標(biāo) 1.知識(shí)目標(biāo):理解等差數(shù)列概念,掌握等差數(shù)列的通項(xiàng)公式,了解等差數(shù)列與一次函數(shù)的關(guān)系。 2.能力目標(biāo):培養(yǎng)學(xué)生觀察、歸納能力,應(yīng)用數(shù)學(xué)公式的能力及滲透函數(shù)、方程的思想。 3.情感目標(biāo):體驗(yàn)從特殊到一般,又到特殊的認(rèn)知規(guī)律,提高數(shù)學(xué)猜想、歸納的能力。 五、重點(diǎn)、難點(diǎn) 教學(xué)重點(diǎn):等差數(shù)列的概念及通項(xiàng)公式的推導(dǎo)。 教學(xué)難點(diǎn):對(duì)等差數(shù)列概念的理解及學(xué)會(huì)通項(xiàng)公式的推導(dǎo)及應(yīng)用。 六、教學(xué)策略和手段 數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)共同發(fā)展的過程,結(jié)合學(xué)生的實(shí)際情況,及本節(jié)內(nèi)容的特點(diǎn),我采用的是“問題教學(xué)法”,其主導(dǎo)思想是以探究式教學(xué)思想為主導(dǎo),由教師提出一系列精心設(shè)計(jì)的問題,在教師的啟發(fā)指導(dǎo)下,讓學(xué)生自己去分析、探索,在探索過程中研究和領(lǐng)悟得出的結(jié)論,從而使學(xué)生即獲得知識(shí)又發(fā)展智能的目的。 教學(xué)手段:多媒體計(jì)算機(jī)和傳統(tǒng)黑板相結(jié)合。通過計(jì)算機(jī)模擬演示,使學(xué)生獲得感性知識(shí)的同時(shí),為掌握理性知識(shí)創(chuàng)造條件,這樣做,可以使學(xué)生有興趣地學(xué)習(xí),注意力也容易集中,符合教學(xué)論中的直觀性原則和可接受性原則。而保留使用黑板則能讓學(xué)生更好的經(jīng)歷整個(gè)教學(xué)過程。 七、課前準(zhǔn)備 學(xué)生預(yù)習(xí),教師做好課件并安裝好。 八、教學(xué)過程 創(chuàng)設(shè)情景,引入概念 設(shè)計(jì)意圖:希望學(xué)生能通過日常生活中的實(shí)際問題的分析對(duì)比,建立等差數(shù)列模型,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的過程。 師生活動(dòng): 情景1: 師—把班上學(xué)生學(xué)號(hào)從小到大排成一列: 學(xué)生: 師—這是數(shù)列嗎?你能歸納出它的通項(xiàng)公式嗎? 學(xué)生—是,師—把上面的數(shù)列各項(xiàng)依次記為,填空: 學(xué)生—填空并歸納出一般規(guī)律:,( ) 師—上面這個(gè)規(guī)律還有其他形式嗎? 學(xué)生—或者寫成,( ) 注:要對(duì)強(qiáng)調(diào),原因在于有意義。 師—你能用普通語(yǔ)言概括上面的規(guī)律嗎? 學(xué)生—自由發(fā)言,選擇最恰當(dāng)?shù)恼Z(yǔ)言。 上面的數(shù)列已找出這一特殊規(guī)律,下面再觀察一些數(shù)列并也找出它們的規(guī)律。 情景2:看幻燈片上的實(shí)例 (1)2008年北京奧運(yùn)會(huì),女子舉重共設(shè)置7個(gè)級(jí)別,其中較輕的4個(gè)級(jí)別體重組成數(shù)列(單位:kg): 48,53,58,63 (2)水庫(kù)的管理員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚。如果一個(gè)水庫(kù)的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位組成數(shù)列(單位:m) 18,15.5,13,10.5,8,5.5 (3)我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本金計(jì)算下一期的利息。按照單利計(jì)算本利和的公式是: 本利和=本金(1+利率存期) 時(shí)間年初本金(元)年末本利和(元)第1年10000 10072第2年10000 10144第3年10000 10216第4年10000 10288第5年10000 10360例如,按活期存入10000元,年利率是0.72%,那么按照單利,5年內(nèi)各年末本利和分別是:如下表(假設(shè)5年既不加存款也不取款,且不扣利息稅) 各年末本利和(單位:元) 10072,10144,10216,10288,10360 師:上面的三個(gè)數(shù)列又分別有什么規(guī)律呢? 學(xué)生—(1),(2),(3),師—?dú)w納上面數(shù)列的共同特征: (d是常數(shù)),師—滿足這種特征的數(shù)列很多,我們有必要為這樣的數(shù)列取一個(gè)名字? 學(xué)生(共同)—等差數(shù)列。 提出課題《等差數(shù)列》 師—給出文字?jǐn)⑹龅亩x(學(xué)生敘述,板書定義): 一般的,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列,d為公差,a1為數(shù)列的首項(xiàng)。 對(duì)定義進(jìn)行分析,強(qiáng)調(diào):= 1 GB3 ①同一個(gè)常數(shù);= 2 GB3 ②從第二項(xiàng)起。 師—這樣的數(shù)列在生活中的例子,誰(shuí)能再舉幾個(gè)? 學(xué)生—某劇場(chǎng)前8排的座位數(shù)分別是 52,50,48,46,44,42,40,38. 學(xué)生—全國(guó)統(tǒng)一鞋號(hào)中成年女鞋的各種尺碼分別是 21,21.5,22,22.5,23,23.5,24,24.5,25 搶答:觀察下列數(shù)列是否為等差數(shù)列 1,2,4,6,8,10,12,…… 0,1,2,3,4,5,6,…… 3,3,3,3,3,3,3…… 2,4,7,11,16,…… -8,-6,-4,0,2,4,…… 3,0,-3,-6,-9,…… 注:常數(shù)列也是等差數(shù)列,公差是0。 推進(jìn)概念,發(fā)現(xiàn)性質(zhì) 設(shè)計(jì)意圖:概括等差中項(xiàng)的概念?偨Y(jié)等差中項(xiàng)公式,用于發(fā)現(xiàn)等差數(shù)列的性質(zhì)。 師生活動(dòng): 師—想一想,一個(gè)等差數(shù)列最少有幾項(xiàng)?它們之間有什么關(guān)系? 學(xué)生思考后回答,至少三項(xiàng),然后老師引導(dǎo)學(xué)生概括等差中項(xiàng)的概念。 設(shè)三個(gè)數(shù)成等差數(shù)列,則A叫a與b的等差中項(xiàng)。同時(shí)有A-a=b-A,說(shuō)明:(1)上面式子反過來(lái)也成立。(2)等差數(shù)列中的任意連續(xù)三項(xiàng)都構(gòu)成等差數(shù)列,反之亦成立。 (三)探究通項(xiàng)公式 設(shè)計(jì)意圖:通過具體數(shù)列的通項(xiàng)公式,總結(jié)一般等差數(shù)列的通項(xiàng)公式,體會(huì)特殊到一般的數(shù)學(xué)思想方法。 師生活動(dòng): 師—對(duì)于一個(gè)數(shù)列,我們最關(guān)心的是每一項(xiàng),而這就要求我們能知道它的通項(xiàng)公式。下面一起來(lái)研究等差數(shù)列的通項(xiàng)公式。 先寫出上面引例中等差數(shù)列的通項(xiàng)公式。再推導(dǎo)一般等差數(shù)列的通項(xiàng)公式。 師—若一個(gè)數(shù)列是等差數(shù)列,它的公差是d,那么數(shù)列的通項(xiàng)公式是什么? 啟發(fā)學(xué)生:(歸納、猜想)可用首項(xiàng)與公差表示數(shù)列中任意一項(xiàng)。 學(xué)生—即: 即: 即: 由此可得: 師—從第幾項(xiàng)開始?xì)w納的? 學(xué)生—第二項(xiàng),所以n≥2。 師—n=1時(shí)呢? 學(xué)生—當(dāng)n=1時(shí),等式也是成立,因而等差數(shù)列的通項(xiàng)公式 ( ) 師—很好! 一、教學(xué)目標(biāo) 【知識(shí)與技能】能夠復(fù)述等差數(shù)列的概念,能夠?qū)W會(huì)等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及蘊(yùn)含的數(shù)學(xué)思想。 【過程與方法】在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的`方法遷移來(lái)研究數(shù)列,提高知識(shí)、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。 【情感態(tài)度與價(jià)值觀】通過對(duì)等差數(shù)列的研究,具備主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。 二、教學(xué)重難點(diǎn) 【教學(xué)重點(diǎn)】 等差數(shù)列的概念、等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。 【教學(xué)難點(diǎn)】 等差數(shù)列通項(xiàng)公式的推導(dǎo)。 三、教學(xué)過程 環(huán)節(jié)一:導(dǎo)入新課 教師PPT展示幾道題目: 1.我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5一個(gè)數(shù),可以得到數(shù)列:0,5,15,20,25 2.小明目前會(huì)100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92。 在澳大利亞悉尼舉行的奧運(yùn)會(huì)上,女子舉重正式列為比賽項(xiàng)目,該項(xiàng)目共設(shè)置了7個(gè)級(jí)別,其中交情的4個(gè)級(jí)別體重組成數(shù)列(單位:kg):48,53,58,63。 教師提問學(xué)生這幾組數(shù)有什么特點(diǎn)?學(xué)生回答從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)的差都等于一個(gè)常數(shù),教師引出等差數(shù)列。 環(huán)節(jié)二:探索新知 1.等差數(shù)列的概念 學(xué)生閱讀教材,同桌討論,類比等比數(shù)列總結(jié)出等差數(shù)列的概念 如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。 問題1:等差數(shù)列的概念中,我們應(yīng)該注意哪些細(xì)節(jié)呢? 環(huán)節(jié)三:課堂練習(xí) 搶答:下列數(shù)列是否為等差數(shù)列? 。1)1,2,4,6,8,10,12,…… 。2)0,1,2,3,4,5,6,…… 。3)3,3,3,3,3,3,3,…… 。4)-8,-6,-4,-2,0,2,4,…… 。5)3,0,-3,-6,-9,…… 環(huán)節(jié)四:小結(jié)作業(yè) 小結(jié):等差數(shù)列的概念及數(shù)學(xué)表達(dá)式。 關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)。 作業(yè):現(xiàn)實(shí)生活中還有哪些等差數(shù)列的實(shí)際應(yīng)用呢?根據(jù)實(shí)際問題自己編寫兩道等差數(shù)列的題目并進(jìn)行求解。 一、知識(shí)與技能 1.了解公差的概念,明確一個(gè)數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等差數(shù)列; 2.正確認(rèn)識(shí)使用等差數(shù)列的各種表示法,能靈活運(yùn)用通項(xiàng)公式求等差數(shù)列的首項(xiàng)、公差、項(xiàng)數(shù)、指定的項(xiàng). 二、過程與方法 1.通過對(duì)等差數(shù)列通項(xiàng)公式的推導(dǎo)培養(yǎng)學(xué)生:的觀察力及歸納推理能力; 2.通過等差數(shù)列變形公式的教學(xué)培養(yǎng)學(xué)生:思維的深刻性和靈活性. 三、情感態(tài)度與價(jià)值觀 通過等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生:的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識(shí). 教學(xué)過程 導(dǎo)入新課 師:上兩節(jié)課我們學(xué)習(xí)了數(shù)列的定義以及給出數(shù)列和表示數(shù)列的幾種方法——列舉法、通項(xiàng)公式、遞推公式、圖象法.這些方法從不同的角度反映數(shù)列的特點(diǎn).下面我們看這樣一些數(shù)列的例子:(課本P41頁(yè)的4個(gè)例子) (1)0,5,10,15,20,25,…; (2)48,53,58,63,…; (3)18,15.5,13,10.5,8,5.5…; (4)10 072,10 144,10 216,10 288,10 366,…. 請(qǐng)你們來(lái)寫出上述四個(gè)數(shù)列的第7項(xiàng). 生:第一個(gè)數(shù)列的第7項(xiàng)為30,第二個(gè)數(shù)列的第7項(xiàng)為78,第三個(gè)數(shù)列的第7項(xiàng)為3,第四個(gè)數(shù)列的第7項(xiàng)為10 510. 師:我來(lái)問一下,你依據(jù)什么寫出了這四個(gè)數(shù)列的第7項(xiàng)呢?以第二個(gè)數(shù)列為例來(lái)說(shuō)一說(shuō). 生:這是由第二個(gè)數(shù)列的后一項(xiàng)總比前一項(xiàng)多5,依據(jù)這個(gè)規(guī)律性我得到了這個(gè)數(shù)列的第7項(xiàng)為78. 師:說(shuō)得很有道理!我再請(qǐng)同學(xué)們仔細(xì)觀察一下,看看以上四個(gè)數(shù)列有什么共同特征?我說(shuō)的是共同特征. 生:1每相鄰兩項(xiàng)的差相等,都等于同一個(gè)常數(shù). 師:作差是否有順序,誰(shuí)與誰(shuí)相減? 生:1作差的順序是后項(xiàng)減前項(xiàng),不能顛倒. 師:以上四個(gè)數(shù)列的共同特征:從第二項(xiàng)起,每一項(xiàng)與它前面一項(xiàng)的差等于同一個(gè)常數(shù)(即等差);我們給具有這種特征的數(shù)列起一個(gè)名字叫——等差數(shù)列. 這就是我們這節(jié)課要研究的內(nèi)容. 推進(jìn)新課 等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示). (1)公差d一定是由后項(xiàng)減前項(xiàng)所得,而不能用前項(xiàng)減后項(xiàng)來(lái)求; 。2)對(duì)于數(shù)列{an},若an-a n-1=d(與n無(wú)關(guān)的數(shù)或字母),n≥2,n∈N*,則此數(shù)列是等差數(shù)列,d叫做公差. 師:定義中的關(guān)鍵字是什么?(學(xué)生:在學(xué)習(xí)中經(jīng)常遇到一些概念,能否抓住定義中的關(guān)鍵字,是能否正確地、深入的理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他學(xué)科的重要一環(huán).因此教師:應(yīng)該教會(huì)學(xué)生:如何深入理解一個(gè)概念,以培養(yǎng)學(xué)生:分析問題、認(rèn)識(shí)問題的能力) 生:從“第二項(xiàng)起”和“同一個(gè)常數(shù)”. 師:很好! 師:請(qǐng)同學(xué)們思考:數(shù)列(1)、(2)、(3)、(4)的通項(xiàng)公式存在嗎?如果存在,分別是什么? 生:數(shù)列(1)通項(xiàng)公式為5n-5,數(shù)列(2)通項(xiàng)公式為5n+43,數(shù)列(3)通項(xiàng)公式為2.5n-15.5,…. 師:好,這位同學(xué)用上節(jié)課學(xué)到的知識(shí)求出了這幾個(gè)數(shù)列的通項(xiàng)公式,實(shí)質(zhì)上這幾個(gè)通項(xiàng)公式有共同的特點(diǎn),無(wú)論是在求解方法上,還是在所求的結(jié)果方面都存在許多共性,下面我們來(lái)共同思考. [合作探究] 等差數(shù)列的通項(xiàng)公式 師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得到的,若一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則據(jù)其定義可得什么? 生:a2-a1=d,即a2=a1+d. 師:對(duì),繼續(xù)說(shuō)下去! 生:a3-a2=d,即a3=a2+d=a1+2d; a4-a3=d,即a4=a3+d=a1+3d; …… 師:好!規(guī)律性的東西讓你找出來(lái)了,你能由此歸納出等差數(shù)列的通項(xiàng)公式嗎? 生:由上述各式可以歸納出等差數(shù)列的通項(xiàng)公式是an=a1+(n-1)d. 師:很好!這樣說(shuō)來(lái),若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)a1和公差d,便可求得其通項(xiàng)an了.需要說(shuō)明的是:此公式只是等差數(shù)列通項(xiàng)公式的猜想,你能證明它嗎? 生:前面已學(xué)過一種方法叫迭加法,我認(rèn)為可以用.證明過程是這樣的: 因?yàn)閍2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.將它們相加便可以得到:an=a1+(n-1)d. 師:太好了!真是活學(xué)活用啊!這樣一來(lái)我們通過證明就可以放心使用這個(gè)通項(xiàng)公式了. 。劢處煟壕v] 由上述關(guān)系還可得:am=a1+(m-1)d, 即a1=am-(m-1)d. 則an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d, 即等差數(shù)列的第二通項(xiàng)公式an=am+(n-m)d.(這是變通的通項(xiàng)公式) 由此我們還可以得到. [例題剖析] 【例1】(1)求等差數(shù)列8,5,2,…的第20項(xiàng); (2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)? 師:這個(gè)等差數(shù)列的首項(xiàng)和公差分別是什么?你能求出它的第20項(xiàng)嗎? 生:1這題太簡(jiǎn)單了!首項(xiàng)和公差分別是a1=8,d=5-8=2-5=-3.又因?yàn)閚=20,所以由等差數(shù)列的通項(xiàng)公式,得a20=8+(20-1)x(-3)=-49. 師:好!下面我們來(lái)看看第(2)小題怎么做. 生:2由a1=-5,d=-9-(-5)=-4得數(shù)列通項(xiàng)公式為an=-5-4(n-1). 由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng). 師:剛才兩個(gè)同學(xué)將問題解決得很好,我們做本例的目的是為了熟悉公式,實(shí)質(zhì)上通項(xiàng)公式就是an,a1,d,n組成的方程(獨(dú)立的量有三個(gè)). 說(shuō)明:(1)強(qiáng)調(diào)當(dāng)數(shù)列{an}的項(xiàng)數(shù)n已知時(shí),下標(biāo)應(yīng)是確切的數(shù)字;(2)實(shí)際上是求一個(gè)方程的正整數(shù)解的問題.這類問題學(xué)生:以前見得較少,可向?qū)W生:著重點(diǎn)出本問題的實(shí)質(zhì):要判斷-401是不是數(shù)列的項(xiàng),關(guān)鍵是求出數(shù)列的通項(xiàng)公式an,判斷是否存在正整數(shù)n,使得an=-401成立. 【例2】已知數(shù)列{an}的通項(xiàng)公式an=pn+q,其中p、q是常數(shù),那么這個(gè)數(shù)列是否一定是等差數(shù)列?若是,首項(xiàng)與公差分別是什么? 例題分析: 師:由等差數(shù)列的'定義,要判定{an}是不是等差數(shù)列,只要根據(jù)什么? 生:只要看差an-an-1(n≥2)是不是一個(gè)與n無(wú)關(guān)的常數(shù). 師:說(shuō)得對(duì),請(qǐng)你來(lái)求解. 生:當(dāng)n≥2時(shí),〔取數(shù)列{an}中的任意相鄰兩項(xiàng)an-1與an(n≥2)〕 an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p為常數(shù), 所以我們說(shuō){an}是等差數(shù)列,首項(xiàng)a1=p+q,公差為p. 師:這里要重點(diǎn)說(shuō)明的是: (1)若p=0,則{an}是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,…. (2)若p≠0,則an是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(diǎn)(n,an)均在一次函數(shù)y=px+q的圖象上,一次項(xiàng)的系數(shù)是公差p,直線在y軸上的截距為q. (3)數(shù)列{an}為等差數(shù)列的充要條件是其通項(xiàng)an=pn+q(p、q是常數(shù)),稱其為第3通項(xiàng)公式.課堂練習(xí) (1)求等差數(shù)列3,7,11,…的第4項(xiàng)與第10項(xiàng). 分析:根據(jù)所給數(shù)列的前3項(xiàng)求得首項(xiàng)和公差,寫出該數(shù)列的通項(xiàng)公式,從而求出所┣笙. 解:根據(jù)題意可知a1=3,d=7-3=4.∴該數(shù)列的通項(xiàng)公式為an=3+(n-1)x4,即an=4n-1(n≥1,n∈N*).∴a4=4x4-1=15,a 10=4x10-1=39. 評(píng)述:關(guān)鍵是求出通項(xiàng)公式. (2)求等差數(shù)列10,8,6,…的第20項(xiàng). 解:根據(jù)題意可知a1=10,d=8-10=-2. 所以該數(shù)列的通項(xiàng)公式為an=10+(n-1)x(-2),即an=-2n+12,所以a20=-2x20+12=-28. 評(píng)述:要求學(xué)生:注意解題步驟的規(guī)范性與準(zhǔn)確性. (3)100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,請(qǐng)說(shuō)明理由. 分析:要想判斷一個(gè)數(shù)是否為某一個(gè)數(shù)列的其中一項(xiàng),其關(guān)鍵是要看是否存在一個(gè)正整數(shù)n值,使得an等于這個(gè)數(shù). 解:根據(jù)題意可得a1=2,d=9-2=7.因而此數(shù)列通項(xiàng)公式為an=2+(n-1)x7=7n-5. 令7n-5=100,解得n=15.所以100是這個(gè)數(shù)列的第15項(xiàng). (4)-20是不是等差數(shù)列0,-7,…的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,請(qǐng)說(shuō)明理由. 解:由題意可知a1=0,,因而此數(shù)列的通項(xiàng)公式為. 令,解得.因?yàn)闆]有正整數(shù)解,所以-20不是這個(gè)數(shù)列的項(xiàng). 課堂小結(jié) 師:(1)本節(jié)課你們學(xué)了什么? 。2)要注意什么? 。3)在生:活中能否運(yùn)用?(讓學(xué)生:反思、歸納、總結(jié),這樣來(lái)培養(yǎng)學(xué)生:的概括能力、表達(dá)能力) 生:通過本課時(shí)的學(xué)習(xí),首先要理解和掌握等差數(shù)列的定義及數(shù)學(xué)表達(dá)式a n-a n-1=d(n≥2);其次要會(huì)推導(dǎo)等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d(n≥1). 【高一數(shù)學(xué)等差數(shù)列教案】相關(guān)文章: 等差數(shù)列數(shù)學(xué)教學(xué)教案優(yōu)秀02-12 高中數(shù)學(xué)等差數(shù)列教案09-25 數(shù)學(xué)等差數(shù)列教案(通用13篇)10-28 數(shù)學(xué)等差數(shù)列教案集合【12篇】05-31 職高數(shù)學(xué)高一教案10-13 高一的數(shù)學(xué)下教案02-07 高一數(shù)學(xué)等差數(shù)列教案 3
高一數(shù)學(xué)等差數(shù)列教案 4
高一數(shù)學(xué)等差數(shù)列教案 5
高一數(shù)學(xué)等差數(shù)列教案 6
高一數(shù)學(xué)等差數(shù)列教案 7
高一數(shù)學(xué)等差數(shù)列教案 8
高一數(shù)學(xué)等差數(shù)列教案 9
高一數(shù)學(xué)等差數(shù)列教案 10
高一數(shù)學(xué)等差數(shù)列教案 11