av午夜福利在线观看_国产精品一区二区白浆_8乄8X国产精品一区二区_国产精品国产AV大片

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

八年級數(shù)學教案

時間:2022-04-22 09:40:57 八年級數(shù)學教案 我要投稿

八年級數(shù)學教案范文錦集7篇

  作為一名無私奉獻的老師,編寫教案是必不可少的,借助教案可以更好地組織教學活動。寫教案需要注意哪些格式呢?以下是小編為大家整理的八年級數(shù)學教案7篇,僅供參考,大家一起來看看吧。

八年級數(shù)學教案范文錦集7篇

八年級數(shù)學教案 篇1

   一、學習目標及重、難點:

  1、了解方差的定義和計算公式。

  2、理解方差概念的產(chǎn)生和形成的過程。

  3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。

  重點:方差產(chǎn)生的必要性和應用方差公式解決實際問題。

  難點:理解方差公式

  二、自主學習:

  (一)知識我先懂:

  方差:設有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的.平方分別是

  我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用

  來表示。

  給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。

  (二)自主檢測小練習:

  1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。

  2、甲、乙兩組數(shù)據(jù)如下:

  甲組:10 9 11 8 12 13 10 7;

  乙組:7 8 9 10 11 12 11 12.

  分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.

  三、新課講解:

  引例:問題: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

  甲:9、10、 10、13、7、13、10、8、11、8;

  乙:8、13、12、11、10、12、7、7、10、10;

  問:(1)哪種農(nóng)作物的苗長的比較高(我們可以計算它們的平均數(shù): = )

  (2)哪種農(nóng)作物的苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )

  歸納: 方差:設有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是

  我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。

  (一)例題講解:

  例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績?nèi)缦卤硭,誰的成績比較穩(wěn)定?為什么?、

  測試次數(shù) 第1次 第2次 第3次 第4次 第5次

  段巍 13 14 13 12 13

  金志強 10 13 16 14 12

  給力提示:先求平均數(shù),在利用公式求解方差。

  (二)小試身手

  1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

  甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

  經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定

  去參加比賽。

  1、求下列數(shù)據(jù)的眾數(shù):

  (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

  2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?

  四、課堂小結

  方差公式:

  給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。

  每課一首詩:求方差,有公式;先平均,再求差;

  求平方,再平均;所得數(shù),是方差。

  五、課堂檢測:

  1、小爽和小兵在10次百米跑步練習中成績?nèi)绫硭荆?單位:秒)

  小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?

  六、課后作業(yè):必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題

  七、學習小札記:

  寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!

八年級數(shù)學教案 篇2

  教學目標:

  1、經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關畫圖的操作技能,發(fā)展初步審美能力,增強對圖形欣賞的意識。

  2、能按要求把所給出的圖形補成以某直線為軸的軸對稱圖形,能依據(jù)圖形的軸對稱關系設計軸對稱圖形。

  教學重點:本節(jié)課重點是掌握已知對稱軸L和一個點,要畫出點A關于L的軸對稱點的畫法,在此基礎上掌握有關軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關系來設計軸對稱圖形,掌握有關畫圖的技能及設計軸對稱圖形是本節(jié)課的難點。

  教學方法:動手實踐、討論。

  教學工具:課件

  教學過程:

  一、 先復習軸對稱圖形的定義,以及軸對稱的相關的性質(zhì):

  1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________

  2.軸對稱的三個重要性質(zhì)______________________________________________

  _____________________________________________________________________

  二、提出問題:

  二、探索練習:

  1. 提出問題:

  如圖:給出了一個圖案的`一半,其中的虛線是這個圖案的對稱軸。

  你能畫出這個圖案的另一半嗎?

  吸引學生讓學生有一種解決難點的想法。

  2.分析問題:

  分析圖案:這個圖案是由重要六個點構成的,要將這個圖案的另一半畫出來,根據(jù)軸對稱的性質(zhì)只要畫出這個圖案中六個點的對應點即可

  問題轉化成:已知對稱軸和一個點A,要畫出點A關于L的對應點 ,可采用如下方法:`

  在學生掌握已知一個點畫對應點的基礎上,解決上述給出的問題,使學生有一條較明確的思路。

  三、對所學內(nèi)容進行鞏固練習:

  1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。

  2. 試畫出與線段AB關于直線L的線段

  3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形

  小 結: 本節(jié)課學習了已知對稱軸L和一個點如何畫出它的對應點,以及如何補全圖形,并利用軸對稱的性質(zhì)知道如何設計軸對稱圖形。

  教學后記:學生對這節(jié)課的內(nèi)容掌握比較好,但對于利用軸對稱的性質(zhì)來設計圖形覺得難度比較大。因本節(jié)課內(nèi)容較有趣,許多學生上課積極性較高

八年級數(shù)學教案 篇3

  第一步:情景創(chuàng)設

  乒乓球的標準直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對這些乒乓球的直徑了進行檢測。結果如下(單位:mm):

  A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;

  B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

  你認為哪廠生產(chǎn)的乒乓球的直徑與標準的誤差更小呢?

 。1)請你算一算它們的平均數(shù)和極差。

  (2)是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標準?

  今天我們一起來探索這個問題。

  探索活動

  通過計算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個極值之間的大小情況,而對其他數(shù)據(jù)的'波動情況不敏感。讓我們一起來做下列的數(shù)學活動

  算一算

  把所有差相加,把所有差取絕對值相加,把這些差的平方相加。

  想一想

  你認為哪種方法更能明顯反映數(shù)據(jù)的波動情況?

  第二步:講授新知:

 。ㄒ唬┓讲

  定義:設有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用

  來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。

  意義:用來衡量一批數(shù)據(jù)的波動大小

  在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定

  歸納:(1)研究離散程度可用(2)方差應用更廣泛衡量一組數(shù)據(jù)的波動大小

 。3)方差主要應用在平均數(shù)相等或接近時

  (4)方差大波動大,方差小波動小,一般選波動小的

  方差的簡便公式:

  推導:以3個數(shù)為例

  (二)標準差:

  方差的算術平方根,即④

  并把它叫做這組數(shù)據(jù)的標準差.它也是一個用來衡量一組數(shù)據(jù)的波動大小的重要的量.

  注意:波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計量,教師也可以根據(jù)學生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計量。

八年級數(shù)學教案 篇4

  5 14.3.2.2 等邊三角形(二)

  教學目標

  掌握等邊三角形的性質(zhì)和判定方法.

  培養(yǎng)分析問題、解決問題的能力.

  教學重點

  等邊三角形的性質(zhì)和判定方法.

  教學難點

  等邊三角形性質(zhì)的應用

  教學過程

  I創(chuàng)設情境,提出問題

  回顧上節(jié)課講過的等邊三角形的有關知識

  1.等邊三角形是軸對稱圖形,它有三條對稱軸.

  2.等邊三角形每一個角相等,都等于60°

  3.三個角都相等的三角形是等邊三角形.

  4.有一個角是60°的等腰三角形是等邊三角形.

  其中1、2是等邊三角形的'性質(zhì);3、4的等邊三角形的判斷方法.

  II例題與練習

  1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

 、僭谶匒B、AC上分別截取AD=AE.

 、谧鳌螦DE=60°,D、E分別在邊AB、AC上.

  ③過邊AB上D點作DE∥BC,交邊AC于E點.

  2.已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大。

  分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.

  III課堂小結

  1、等腰三角形和性質(zhì)

  2、等腰三角形的條件

  V布置作業(yè)

  1.教科書第147頁練習1、2

  2.選做題:

  (1)教科書第150頁習題14.3第ll題.

  (2)已知等邊△ABC,求平面內(nèi)一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?

  (3)《課堂感悟與探究》

  5

八年級數(shù)學教案 篇5

  教學任務分析

  教學目標

  知識技能

  探索并掌握梯形的有關概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).

  數(shù)學思考

  能夠運用梯形的有關概念和性質(zhì)進行有關問題的論證和計算,進一步培養(yǎng)學生的分析問題能力和計算能力.

  解決問題

  通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想.

  情感態(tài)度

  在應用等腰梯形的性質(zhì)的過程養(yǎng)成獨立思考的習慣, 在數(shù)學學習活動中獲得成功的體驗.

  重點

  等腰梯形的性質(zhì)及其應用.

  難點

  解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.

  教學流程安排

  活動流程圖

  活動的內(nèi)容和目的

  活動1想一想

  活動2說一說

  活動3畫一畫

  活動4做—做

  活動5練一練

  活動6理一理

  觀察梯形圖片,引入本節(jié)課的學習內(nèi)容.

  了解梯形定義、各部分名稱及分類.

  通過畫圖活動,初步發(fā)現(xiàn)梯形與三角形的轉化關系.

  探究得到等腰梯形的性質(zhì).

  通過解決具體問題,尋找解決梯形問題的方法.

  通過整理回顧,鞏固知識、提高能力、滲透思想.

  教學過程設計

  問題與情景

  師生行為

  設計意圖

  [活動1]

  觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?

  演示圖片,學生欣賞.

  結合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.

  由現(xiàn)實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的.特點,培養(yǎng)學生的觀察、概括能力.

  [活動2]

  梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.

  學生根據(jù)梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區(qū)別和聯(lián)系.

  通過類比,培養(yǎng)學生歸納、總結的能力.

  問題與情景

  師生行為

  設計意圖

  一些基本概念

  (1)(如圖):底、腰、高.

 。2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

  (3)直角梯形:有一個角是直角的梯形叫做直角梯形.

  學生在小學已經(jīng)對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發(fā)言后, 教師可以強調(diào):①梯形與四邊形的關系;

 、谏稀⑾碌椎母拍钍怯傻椎拈L短來定義的,而并不是指位置來說的.

  熟悉圖形,明確概念,為探究圖形性質(zhì)做準備.

  [活動3]

  畫一畫

  在下列所給圖中的每個三角形中畫一條線段,

 。1)怎樣畫才能得到一個梯形?

 。2)在哪些三角形中,能夠得到一個等腰梯形?

  在學生獨立探究的基礎上,學生分組交流.

  教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.

  本次活動教師應重點關注:

 。1)學生在活動過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉化方法.

 。2)學生能否將等腰三角形轉化為等腰梯形.

  (3)學生能否主動參與探究活動,在討論中發(fā)表自己的見解,傾聽他人的意見,對不同的觀點進行質(zhì)疑,從中獲益.

  等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質(zhì)或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據(jù)等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質(zhì),為活動4種開展探究奠定了基礎.

  問題與情景

  師生行為

  設計意圖

  [活動4]

  做—做

  探索等腰梯形的性質(zhì)(引入用軸對稱解決問題的思想).

  在一張方格紙上作一個等腰梯形,連接兩條對角線.

  (1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學生畫圖并通過觀察猜想;

 。2)這個等腰梯形的兩條對角線的長度有什么關系?

  學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結論.

  針對不同認識水平的學生,教師指導學生活動.

  師生共同歸納:

 、俚妊菪问禽S對稱圖形,上下底的中點連線是對稱軸.

 、诘妊菪蝺裳嗟龋

 、鄣妊菪瓮坏咨系膬蓚角相等.

 、艿妊菪蔚膬蓷l對角線相等.

  教學中要注意引導學生證明等腰梯形的性質(zhì),尤其在證明“等腰梯形同一底上的兩個角相等”這條性質(zhì)時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現(xiàn),可以借此機會,給學生介紹這兩種輔助線的添加方法.

  [活動5]

  練—練

  例1 (教材P118的例1)略.

  例2 如圖,梯形ABCD中,AD∥BC,

  ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

  求CD的長.

  師生共同分析,尋找解決問題的方法和策略.

  例1是等腰梯形性質(zhì)的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.

  分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.

  其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

  解:(略)

  通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當?shù)妮o助線,把梯形問題轉化為已經(jīng)熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內(nèi)容很有幫助.

  問題與情景

  師生行為

  設計意圖

  例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

  BE⊥AC于E.

  求證:BE=CD.

  分析:要證BE=CD,需添加適當?shù)妮o助線,構造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

  證明(略)

  例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據(jù)學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.

  [活動6]

  1.小結

  2.布置作業(yè)

 。1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.

 。2)已知:如圖,

  梯形ABCD中,CD//AB,,.

  求證:AD=AB—DC.

 。3)已知,如圖,

  梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結論)

  師生歸納總結:

  解決梯形問題常用的方法:

 。1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);

 。2)“作高”:使兩腰在兩個直角三角形中(圖2);

 。3)“延腰”:構造具有公共角的兩個等腰三角形(圖3);

 。4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);

 。5)“等積變形”,連結梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構成三角形(圖5).

  盡量多地讓學生參與發(fā)言是一個交流的過程.

  梳理本節(jié)課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續(xù)探究的空間.

  學生通過獨立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時查漏補缺.

八年級數(shù)學教案 篇6

  教學目標:

  1. 掌握三角形內(nèi)角和定理及其推論;

  2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;

  3.通過對三角形分類的學習,使學生了解數(shù)學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。

  4.通過三角形內(nèi)角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹?shù)目茖W態(tài)

  5. 通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯(lián)系與轉化的辯證思想。

  教學重點:

  三角形內(nèi)角和定理及其推論。

  教學難點:

  三角形內(nèi)角和定理的證明

  教學用具:

  直尺、微機

  教學方法:

  互動式,談話法

  教學過程:

  1、創(chuàng)設情境,自然引入

  把問題作為教學的出發(fā)點,創(chuàng)設問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。

  問題1 三角形三條邊的關系我們已經(jīng)明確了,而且利用上述關系解決了一些幾何問題,那么三角形的三個內(nèi)角有何關系呢?

  問題2 你能用幾何推理來論證得到的關系嗎?

  對于問題1絕大多數(shù)學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內(nèi)容(板書課題)

  新課引入的好壞在某種程度上關系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節(jié)課學習的內(nèi)容自然合理。

  2、設問質(zhì)疑,探究嘗試

  (1)求證:三角形三個內(nèi)角的.和等于

  讓學生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。

  問題1 觀察:三個內(nèi)角拼成了一個

  什么角?問題2 此實驗給我們一個什么啟示?

  (把三角形的三個內(nèi)角之和轉化為一個平角)

  問題3 由圖中AB與CD的關系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?

  其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。

  (2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

  學生回答后,電腦顯示圖表。

  (3)三角形中三個內(nèi)角之和為定值

  ,那么對三角形的其它角還有哪些特殊的關系呢?問題1 直角三角形中,直角與其它兩個銳角有何關系?

  問題2 三角形一個外角與它不相鄰的兩個內(nèi)角有何關系?

  問題3 三角形一個外角與其中的一個不相鄰內(nèi)角有何關系?

  其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經(jīng)過分析討論,得出結論并書寫證明過程。

  這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。

  3、三角形三個內(nèi)角關系的定理及推論

  引導學生分析并嚴格書寫解題過程

八年級數(shù)學教案 篇7

  教學目標:完全平方公式的推導及其應用;完全平方公式的幾何解釋;視學生對算理的理解,有意識地培養(yǎng)學生的思維條理性和表達能力.

  教學重點與難點:完全平方公式的推導過程、結構特點、幾何解釋,靈活應用.

  教學過程:

  一、提出問題,學生自學

  問題:根據(jù)乘方的定義,我們知道:a2=aa,那么(a+b)2應該寫成什么樣的形式呢?(a+b)2的運算結果有什么規(guī)律?計算下列各式,你能發(fā)現(xiàn)什么規(guī)律?

  (1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;

  (2)(p1)2=(p1)(p1)=_______;(m2)2=_______;

  學生討論,教師歸納,得出結果:

  (1)(p+1)2=(p+1)(p+1)=p2+2p+1

  (m+2)2=(m+2)(m+2)=m2+4m+4

  (2)(p1)2=(p1)(p1)=p22p+1

  (m2)2=(m2)(m2)=m24m+4

  分析推廣:結果中有兩個數(shù)的平方和,而2p=2p1,4m=2m2,恰好是兩個數(shù)乘積的`二倍(1)(2)之間只差一個符號.

  推廣:計算(a+b)2=__________;(ab)2=__________.

  得到公式,分析公式

  結論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

  即:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍.

  二、幾何分析

  你能根據(jù)圖(1)和圖(2)的面積說明完全平方公式嗎?

  圖(1)大正方形的邊長為(a+b),面積就是(a+b)2,同時,大正方形可以分成圖中①②③④四個部分,它們分別的面積為a2、ab、ab、b2,因此,整個面積為a2+ab+ab+b2=a2+2ab+b2,即說明(a+b)2=a2+2ab+b2. 請點擊下載Word版完整教案:新人教版八年級數(shù)學上冊《完全平方公式》教案教案《新人教版八年級數(shù)學上冊《完全平方公式》教案》,來自網(wǎng)!

【八年級數(shù)學教案】相關文章:

八年級的數(shù)學教案12-14

八年級數(shù)學教案06-18

初中八年級數(shù)學教案11-03

人教版八年級數(shù)學教案11-04

八年級上冊數(shù)學教案11-09

八年級的數(shù)學教案15篇12-14

八年級下冊數(shù)學教案01-01

八年級數(shù)學教案人教版01-03

八年級數(shù)學教案【熱門】12-03

【熱門】八年級數(shù)學教案11-29