八年級數(shù)學教案模板6篇
作為一名教職工,編寫教案是必不可少的,借助教案可以更好地組織教學活動。教案要怎么寫呢?以下是小編幫大家整理的八年級數(shù)學教案6篇,歡迎閱讀,希望大家能夠喜歡。
八年級數(shù)學教案 篇1
教學目標
①經(jīng)歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結(jié)果都是整式),培養(yǎng)學生獨立思考、集體協(xié)作的能力。
、诶斫庹匠ǖ乃憷恚l(fā)展有條理的思考及表達能力。
教學重點與難點
重點:整式除法的運算法則及其運用。
難點:整式除法的運算法則的推導和理解,尤其是單項式除以單項式的運算法則。
教學準備
卡片及多媒體課件。
教學設(shè)計
情境引入
教科書第161頁問題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?
重點研究算式(1。90×1024)÷(5。98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。
注:教科書從實際問題引入單項式的除法運算,學生在探索這個問題的過程中,將自然地體會到學習單項式的除法運算的必要性,了解數(shù)學與現(xiàn)實世界的聯(lián)系,同時再次經(jīng)歷感受較大數(shù)據(jù)的過程。
探究新知
(1)計算(1。90×1024)÷(5。98×1021),說說你計算的根據(jù)是什么?
。2)你能利用(1)中的方法計算下列各式嗎?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
(3)你能根據(jù)(2)說說單項式除以單項式的運算法則嗎?
注:教師可以鼓勵學生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運用自己的`語言進行描述。
單項式的除法法則的推導,應按從具體到一般的步驟進行。探究活動的安排,是使學生通過對具體的特例的計算,歸納出單項式的除法運算性質(zhì),并能運用乘除互逆的關(guān)系加以說明,也可類比分數(shù)的約分進行。在這些活動過程中,學生的化歸、符號演算等代數(shù)推理能力和有條理的表達能力得到進一步發(fā)展。重視算理算法的滲透是新課標所強調(diào)的。
歸納法則
單項式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
注:通過總結(jié)法則,培養(yǎng)學生的概括能力,養(yǎng)成用數(shù)學語言表達自己想法的數(shù)學學習習慣。
應用新知
例2計算:
(1)28x4y2÷7x3y;
。2)—5a5b3c÷15a4b。
首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學生口述,教師板書的形式完成?谑龊桶鍟紤⒁庹故痉▌t的應用,計算過程要詳盡,使學生盡快熟悉法則。
注:單項式除以單項式,既要對系數(shù)進行運算,又要對相同字母進行指數(shù)運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學生來講,難免會出現(xiàn)照看不全的情況,所以更應督促學生細心解答問題。
鞏固新知教科書第162頁練習1及練習2。
學生自己嘗試完成計算題,同桌交流。
注:在獨立解題和同伴的相互交流過程中讓學生自己去體會法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學生良好的思維習慣和主動參與學習的習慣。
作業(yè)
1。必做題:教科書第164頁習題15。3第1題;第2題。
2。選做題:教科書第164頁習題15。3第8題
八年級數(shù)學教案 篇2
一、創(chuàng)設(shè)情境
1.一次函數(shù)的圖象是什么,如何簡便地畫出一次函數(shù)的圖象?
。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時,取兩點即可畫出函數(shù)的圖象).
2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點的直線?
。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經(jīng)過原點(0,0)的一條直線).
3.平面直角坐標系中,x軸、y軸上的點的坐標有什么特征?
4.在平面直角坐標系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時,所選取的兩個點有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個點在坐標系的什么地方?
二、探究歸納
1.在畫函數(shù)的圖象時,通過列表,可知我們選取的點是(0,-1)和(2,0),這兩點都在坐標軸上,其中點(0,-1)在y軸上,點(2,0)在x軸上,我們把這兩個點依次叫做直線與y軸與x軸的'交點.
2.求直線y=-2x-3與x軸和y軸的交點,并畫出這條直線.
分析x軸上點的縱坐標是0,y軸上點的橫坐標0.由此可求x軸上點的橫坐標值和y軸上點的縱坐標值.
解因為x軸上點的縱坐標是0,y軸上點的橫坐標0,所以當y=0時,x=-1.5,點(-1.5,0)就是直線與x軸的交點;當x=0時,y=-3,點(0,-3)就是直線與y軸的交點.
過點(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.
所以一次函數(shù)y=kx+b,當x=0時,y=b;當y=0時,.所以直線y=kx+b與y軸的交點坐標是(0,b),與x軸的交點坐標是.
三、實踐應用
例1若直線y=-kx+b與直線y=-x平行,且與y軸交點的縱坐標為-2;求直線的表達式.
分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點的縱坐標為-2,可求出b的值.
解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點的縱坐標為-2,所以b=-2,因此所求的直線的表達式為y=-x-2.
例2求函數(shù)與x軸、y軸的交點坐標,并求這條直線與兩坐標軸圍成的三角形的面積.
分析求直線與x軸、y軸的交點坐標,根據(jù)x軸、y軸上點的縱坐標和橫坐標分別為0,可求出相應的橫坐標和縱坐標?
八年級數(shù)學教案 篇3
一元二次方程根與系數(shù)的關(guān)系的知識內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個例題介紹了利用根與系數(shù)的關(guān)系簡化一些計算的知識。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的系數(shù)的方法等等。
根與系數(shù)的關(guān)系也稱為韋達定理(韋達是法國數(shù)學家)。韋達定理是初中代數(shù)中的一個重要定理。這是因為通過韋達定理的學習,把一元二次方程的研究推向了高級階段,運用韋達定理可以進一步研究數(shù)學中的許多問題,如二次三項式的'因式分解,解二元二次方程組;韋達定理對后面函數(shù)的學習研究也是作用非凡。
通過近些年的中考數(shù)學試卷的分析可以得出:韋達定理及其應用是各地市中考數(shù)學命題的熱點之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。
通過韋達定理的教學,可以培養(yǎng)學生的創(chuàng)新意識、創(chuàng)新精神和綜合分析數(shù)學問題的能力,也為學生今后學習方程理論打下基礎(chǔ)。
(二)重點、難點
一元二次方程根與系數(shù)的關(guān)系是重點,讓學生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學生真正掌握有一定的難度,是教學的難點。
(三)教學目標
1、知識目標:要求學生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運用根與系數(shù)的關(guān)系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。
八年級數(shù)學教案 篇4
課時目標
1.掌握分式、有理式的概念。
2.掌握分式是否有意義、分式的值是否等于零的識別方法。
教學重點
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學難點:
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學時間:一課時。
教學用具:投影儀等。
教學過程:
一.復習提問
1.什么是整式?什么是單項式?什么是多項式?
2.判斷下列各式中,哪些是整式?哪些不是整式?
、伲玬2 ②1+x+y2- ③ ④
⑤ ⑥ ⑦
二.新課講解:
設(shè)問:不是整工式子中,和整式有什么區(qū)別?
小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。
練習:下列各式中,哪些是分式哪些不是?
。1)、、(2)、(3)、(4)、(5)x2、(6)+4
強調(diào):(6)+4帶有是無理式,不是整式,故不是分式。
2.小結(jié):對整式、分式的.正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。
練習:課后練習P6練習1、2題
設(shè)問:(讓學生看課本上P5“思考”部分,然后回答問題。)
例題講解:課本P5例題1
分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。
(板書解題過程。)
3.小結(jié):分式是否有意義的識別方法:當分式的分母為零時,分式無意義;當分式的分母不等于零時,分式有意義。
增加例題:當x取什么值時,分式有意義?
解:由分母x2-4=0,得x=±2。
∴ 當x≠±2時,分式有意義。
設(shè)問:什么時候分式的值為零呢?
例:
解:當 ① 分式的值為零
八年級數(shù)學教案 篇5
知識目標:理解函數(shù)的概念,能準確識別出函數(shù)關(guān)系中的自變量和函數(shù)
能力目標:會用變化的量描述事物
情感目標:回用運動的觀點觀察事物,分析事物
重點:函數(shù)的概念
難點:函數(shù)的概念
教學媒體:多媒體電腦,計算器
教學說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學會確定自變量的取值范圍
教學設(shè)計:
引入:
信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?
新課:
問題:(1)如圖是某日的氣溫變化圖。
、 這張圖告訴我們哪些信息?
② 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?
(2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應的數(shù):
、 這表告訴我們哪些信息?
、 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達式表示出來嗎?
一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的'值與其對應,那么我們就說x是自變量,y是x的函數(shù)。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數(shù)值。
范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:
(5) 長方形的寬一定時,其長與面積;
(6) 等腰三角形的底邊長與面積;
(7) 某人的年齡與身高;
活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系
思考:自變量是否可以任意取值
例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。
(1) 寫出表示y與x的函數(shù)關(guān)系式.
(2) 指出自變量x的取值范圍.
(3) 汽車行駛200km時,油箱中還有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活動2:練習教材9頁練習
小結(jié):(1)函數(shù)概念
(2)自變量,函數(shù)值
(3)自變量的取值范圍確定
作業(yè):18頁:2,3,4題
八年級數(shù)學教案 篇6
教學任務(wù)分析
教學目標
知識技能
一、類比同分母分數(shù)的加減,熟練掌握同分母分式的加減運算.
二、類比異分母分數(shù)的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.
數(shù)學思考
在分式的加減運算中,體驗知識的化歸聯(lián)系和思維靈活性,培養(yǎng)學生整體思考的分析問題能力.
解決問題
一、會進行同分母和異分母分式的加減運算.
二、會解決與分式的加減有關(guān)的簡單實際問題.
三、能進行分式的加、剪、乘、除、乘方的混合運算.
情感態(tài)度
通過師生活動、學生自我探究,讓學生充分參與到數(shù)學學習的過程中來,使學生在整體思考中開闊視野,養(yǎng)成良好品德,滲透化歸對立統(tǒng)一的辯證觀點.
重點
分式的加減法.
難點
異分母分式的加減法及簡單的分式混合運算.
教學流程安排
活動流程圖
活動內(nèi)容和目的
活動1:問題引入
活動2:學習同分母分式的加減
活動3:探究異分母分式的加減
活動4:發(fā)現(xiàn)分式加減運算法則
活動5:鞏固練習、總結(jié)、作業(yè)
向?qū)W生提出兩個實際問題,使學生體會學習分式加減的必要性及迫切性,創(chuàng)始問題情境,激發(fā)學生的學習熱情.
類比同分母分數(shù)的加減,讓學生歸納同分母分式的加減的方法并進行簡單運算.
回憶異分母分數(shù)的加減,使學生歸納異分母分式的加減的方法.
通過以上探究過程,讓學生發(fā)現(xiàn)分式加減運算的法則,通過分式在物理學的應用及簡單混合運算,使學生深化對分式加減運算法則的理解.
通過練習、作業(yè)進一步鞏固分式的運算.
課前準備
教具
學具
補充材料
課件
教學過程設(shè)計
問題與情境
師生行為
設(shè)計意圖
[活動1]
1.問題一:比較電腦與手抄的錄入時間.
2.問題二;幫幫小明算算時間
所需時間為,
如何求出的值?
3.這里用到了分式的加減,提出本節(jié)課的主題.
教師通過課件展示問題.學生積極動腦解決問題,提出困惑:
分式如何進行加減?
通過實際問題中要用到分式的加減,從而提出問題,讓學生思考,可以激發(fā)學生探究的熱情.
。刍顒樱玻
1.提出小學數(shù)學中一道簡單的分數(shù)加法題目.
2.用課件引導學生用類比法,歸納總結(jié)同分母分式加法法則.
3.教師使用課件展示[例1]
4.教師通過課件出兩個小練習.
教師提出問題,學生回答,進一步回憶同分母分數(shù)加減的運算法則.
學生在教師的引導下,探索同分母分式加減的運算方法.
通過例題,讓學生和教師一起體會同分母分式加減運算,同時教師指出運算中的.注意事項.
由兩個學生板書自主完成練習,教師巡視指導學生練習.
運用類比的方法,從學生熟知的知識入手,有利于學生接受新知識.
師生共同完成例題,使學生感受到自己很棒,自己能夠通過思考學會新知識,提高自信心.
讓學生進一步體會同分母分式的加減運算.
。刍顒樱常
1.教師以練習的形式通過“自我發(fā)展的平臺”,向?qū)W生展示這樣一道題.
2.教師提出思考題:
異分母的分式加減法要遵守什么法則呢?
教師展示一道異分母分式的加減題目,學生自然就想到異分母分數(shù)的.加減.
教師通過課件引導學生思考,學生會想到小學數(shù)學中,異分母分數(shù)的加減法則,從而聯(lián)想到異分母分式的加減法則,教師引導學生歸納出異分母分式加減運算的方法思路.
由學生主動提出解決問題的方法,從而激發(fā)了學生探究問題的興趣.
通過學生的自我探究、歸納總結(jié),讓學生充分參與到數(shù)學學習的過程中來,體會學習的樂趣.
。刍顒樱矗
1.在語言敘述分式加減法則的基礎(chǔ)上,用字母表示分式的加減法法則.
2.教師使用課件展示[例2]
3.教師通過課件出4個小練習.
4.[例3]在圖的電路中,已測定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據(jù)電學的有關(guān)定律可知總電阻R與R1R2滿足關(guān)系式 ;
試用含有R1的式子表示總電阻R
5.教師使用課件展示[例4]
教師提出要求,由學生說出分式加減法則的字母表示形式.
通過例題,讓學生和教師一起體會異分母分式加減運算,同時教師重點演示通分的過程.
教師引導學生找出每道題的方法、如何找最簡公分母及時指出學生在通分中出現(xiàn)的問題,由學生自己完成.
教師引導學生尋找解決問題的突破口,由師生共同完成,對比物理學中的計算,體會各學科知識之間的聯(lián)系.
分式的混合運算,師生共同完成,教師提醒學生注意運算順序,通分要仔細.
由此練習學生的抽象表達能力,讓學生體會數(shù)學符號語言的精練.
讓學生體會運用的公式解決問題的過程.
鍛煉學生運用法則解決問題的能力,既準確又有速度.
提高學生的計算能力.
通過分式在物理學中的應用,加強了學科之間的聯(lián)系,使學生開闊了視野,讓學生體會到學習數(shù)學的重要性,體會各學科全面發(fā)展的重要性,提高學習的興趣.
提高學生綜合應用知識的能力.
。刍顒樱担
1.教師通過課件出2個分式混合運算的小練習.
2.總結(jié):
a)這節(jié)課我們學習了哪些知識?你能說一說嗎?
b)⑴方法思路;
c)⑵計算中的主意事項;
d)⑶結(jié)果要化簡.
3.作業(yè):
a)教科書習題16.2第4、5、6題.
學生練習、鞏固.
教師巡視指導.
學生完成、交流.,師生評價.
教師引導學生回憶本節(jié)課所學內(nèi)容,學生回憶交流,師生共同補充完善.
教師布置作業(yè).
鍛煉學生運用法則進行運算的能力,提高準確性及速度.
提高學生歸納總結(jié)的能力.
【八年級數(shù)學教案】相關(guān)文章:
八年級的數(shù)學教案12-14
八年級數(shù)學教案06-18
初中八年級數(shù)學教案11-03
人教版八年級數(shù)學教案11-04
八年級上冊數(shù)學教案11-09
八年級的數(shù)學教案15篇12-14
八年級下冊數(shù)學教案01-01
八年級數(shù)學教案人教版01-03
八年級數(shù)學教案【熱門】12-03
【熱門】八年級數(shù)學教案11-29