av午夜福利在线观看_国产精品一区二区白浆_8乄8X国产精品一区二区_国产精品国产AV大片

現(xiàn)在位置:范文先生網>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

八年級數(shù)學教案

時間:2022-08-27 02:12:52 八年級數(shù)學教案 我要投稿

關于八年級數(shù)學教案集錦七篇

  作為一名教職工,時常需要用到教案,借助教案可以提高教學質量,收到預期的教學效果?靵韰⒖冀贪甘窃趺磳懙陌!下面是小編整理的八年級數(shù)學教案7篇,僅供參考,大家一起來看看吧。

關于八年級數(shù)學教案集錦七篇

八年級數(shù)學教案 篇1

  一、教學目標:

  1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;

  2、能力目標:

 、伲趯嵺`操作過程中,逐步探索圖形之間的平移關系;

 、,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;

  3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。

  二、重點與難點:

  重點:圖形連續(xù)變化的特點;

  難點:圖形的劃分。

  三、教學方法:

  講練結合。使用多媒體課件輔助教學。

  四、教具準備:

  多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

  五、教學設計:

  創(chuàng)設情景,探究新知:

  (演示課件):教材上小狗的圖案。提問:

  (1)這個圖案有什么特點?

  (2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?

  (3)在平移過程中,“基本圖案”的.大小、形狀、位置是否發(fā)生了變化?

  小組討論,派代表回答。(答案可以多種)

  讓學生充分討論,歸納總結,老師給予適當?shù)闹笇,并對每種答案都要肯定。

  看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?

  小組討論,派代表到臺上給大家講解。

  氣氛要熱烈,充分調動學生的積極性,發(fā)掘他們的想象力。

  暢所欲言,互相補充。

  課堂小結:

  在教師的引導下學生總結本節(jié)課的主要內容,并啟發(fā)學生在我們周圍尋找平移的例子。

  課堂練習:

  小組討論。

  小組討論完成。

  例子一定要和大家接觸緊密、典型。

  答案不惟一,對于每種答案,教師都要給予充分的肯定。

  六、教學反思:

  本節(jié)的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數(shù)學美學思想,促進學生綜合素質的提高。

八年級數(shù)學教案 篇2

  一、學生起點分析

  學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?

  反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中

  可能要用到反證等思路,對現(xiàn)階段學生而言可能還具有一定困難,需要教師適時的引導。

  二、學習任務分析

  本節(jié)課是北師大版數(shù)學八年級(上)第一章《勾股定理》第2節(jié)。教學任務有:探索勾股定理的逆定理

  并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗。為此確定教學目標:

  ● 知識與技能目標

  1.理解勾股定理逆定理的具體內容及勾股數(shù)的概念;

  2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

  ● 過程與方法目標

  1.經歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力;

  2.經歷從實驗到驗證的過程,發(fā)展學生的數(shù)學歸納能力。

  ● 情感與態(tài)度目標

  1.體驗生活中的數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣;

  2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

  教學重點

  理解勾股定理逆定理的具體內容。

  三、教法學法

  1.教學方法:實驗猜想歸納論證

  本節(jié)課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數(shù)學結論已有一定的體驗

  但數(shù)學思維嚴謹?shù)耐瑢W總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學目標,我力求從以下三個方面對學生進行引導:

  (1)從創(chuàng)設問題情景入手,通過知識再現(xiàn),孕育教學過程;

  (2)從學生活動出發(fā),通過以舊引新,順勢教學過程;

  (3)利用探索,研究手段,通過思維深入,領悟教學過程。

  2.課前準備

  教具:教材、電腦、多媒體課件。

  學具:教材、筆記本、課堂練習本、文具。

  四、教學過程設計

  本節(jié)課設計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

  登高望遠;第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):情境引入

  內容:

  情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

  2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

  意圖:

  通過情境的創(chuàng)設引入新課,激發(fā)學生探究熱情。

  效果:

  從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎。

  第二環(huán)節(jié):合作探究

  內容1:探究

  下面有三組數(shù),分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

  1.這三組數(shù)都滿足 嗎?

  2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數(shù)。

  意圖:

  通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數(shù)學結論的發(fā)現(xiàn)總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

  效果:

  經過學生充分討論后,匯總各小組實驗結果發(fā)現(xiàn):①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

  從上面的分組實驗很容易得出如下結論:

  如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

  內容2:說理

  提問:有同學認為測量結果可能有誤差,不同意這個發(fā)現(xiàn)。你認為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?

  意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

  如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

  滿足 的三個正整數(shù),稱為勾股數(shù)。

  注意事項:為了讓學生確認該結論,需要進行說理,有條件的'班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

  活動3:反思總結

  提問:

  1.同學們還能找出哪些勾股數(shù)呢?

  2.今天的結論與前面學習勾股定理有哪些異同呢?

  3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

  4.通過今天同學們合作探究,你能體驗出一個數(shù)學結論的發(fā)現(xiàn)要經歷哪些過程呢?

  意圖:進一步讓學生認識該定理與勾股定理之間的關系

  第三環(huán)節(jié):小試牛刀

  內容:

  1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。

  ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

  A 250 B 150 C 200 D 不能確定

  解答:B

  3.如圖1:在 中, 于 , ,則 是( )

  A 等腰三角形 B 銳角三角形

  C 直角三角形 D 鈍角三角形

  解答:C

  4.將直角三角形的三邊擴大相同的倍數(shù)后, (圖1)

  得到的三角形是( )

  A 直角三角形 B 銳角三角形

  C 鈍角三角形 D 不能確定

  解答:A

  意圖:

  通過練習,加強對勾股定理及勾股定理逆定理認識及應用

  效果

  每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

  第四環(huán)節(jié):登高望遠

  內容:

  1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉彎后,是否沿正西方向航行?

  解答:由題意畫出相應的圖形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船轉彎后,是沿正西方向航行的。

  意圖:

  利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

  效果:

  學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形( ),以便于計算。

  第五環(huán)節(jié):鞏固提高

  內容:

  1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

  解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

  2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

  圖4 圖5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意圖:

  第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。

  效果:

  學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。

  第六環(huán)節(jié):交流小結

  內容:

  師生相互交流總結出:

  1.今天所學內容①會利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數(shù),稱為勾股數(shù);

  2.從今天所學內容及所作練習中總結出的經驗與方法:①數(shù)學是源于生活又服務于生活的;②數(shù)學結論的發(fā)現(xiàn)總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形, 便于計算。

  意圖:

  鼓勵學生結合本節(jié)課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數(shù)學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數(shù)學的應用價值,發(fā)展運用數(shù)學的信心和能力,初步形成積極參與數(shù)學活動的意識。

  效果:

  學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

  第七環(huán)節(jié):布置作業(yè)

  課本習題1.4第1,2,4題。

  五、教學反思:

  1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習。

  2.注重引導學生積極參與實驗活動,從中體驗任何一個數(shù)學結論的發(fā)現(xiàn)總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。

  3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

  4.注重對學習新知理解應用偏困難的學生的進一步關注。

  5.對于勾股定理的逆定理的論證可根據(jù)學生的實際情況做適當調整,不做要求。

  由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據(jù)自己班級學生的狀況進行適當?shù)膭h減或調整。

  附:板書設計

  能得到直角三角形嗎

  情景引入 小試牛刀: 登高望遠

八年級數(shù)學教案 篇3

  復習第一步::

  勾股定理的有關計算

  例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個正方形,則此正方形的面積為.

  析解:圖中陰影是一個正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長平方為:172-152=64,故正方形面積為6

  勾股定理解實際問題

  例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場上,旗桿旗頂?shù)降孛娴?高度為220cm.在無風的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時最低處離地面的最小高度h.

  析解:彩旗自然下垂的長度就是矩形DCEF

  的對角線DE的長度,連接DE,在Rt△DEF中,根據(jù)勾股定理,

  得DE=h=220-150=70(cm)

  所以彩旗下垂時的最低處離地面的最小高度h為70cm

  與展開圖有關的計算

  例3、(20xx年青島市中考試題)如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點A到頂點C’的最短距離.

  析解:正方體是由平面圖形折疊而成,反之,一個正方體也可以把它展開成平面圖形,如圖是正方體展開成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點A到點C’的最短距離.而在正方體中,線段AC’變成了折線,但長度沒有改變,所以頂點A到頂點C’的最短距離就是在圖2中線段AC’的長度.

  在矩形ACC’A’中,因為AC=2,CC’=1

  所以由勾股定理得AC’=.

  ∴從頂點A到頂點C’的最短距離為

  復習第二步:

  1.易錯點:本節(jié)同學們的易錯點是:在用勾股定理求第三邊時,分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯誤的出現(xiàn),在解題中,同學們一定要找準直角邊和斜邊,同時要弄清楚解題中的三角形是否為直角三角形.

  例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長c.

  錯解:因為a=6,b=10,根據(jù)勾股定理得c=剖析:上面解法,由于審題不仔細,忽視了∠B=90°,這一條件而導致沒有分清直角三角形的斜邊和直角邊,錯把c當成了斜邊.

  正解:因為a=6,b=10,根據(jù)勾股定理得,c=溫馨提示:運用勾股定理時,一定分清斜邊和直角邊,不能機械套用c2=a2+b2

  例5:已知一個Rt△ABC的兩邊長分別為3和4,則第三邊長的平方是

  錯解:因為Rt△ABC的兩邊長分別為3和4,根據(jù)勾股定理得:第三邊長的平方是32+42=25

  剖析:此題并沒有告訴我們已知的邊長4一定是直角邊,而4有可能是斜邊,因此要分類討論.

  正解:當4為直角邊時,根據(jù)勾股定理第三邊長的平方是25;當4為斜邊時,第三邊長的平方為:42-32=7,因此第三邊長的平方為:25或7.

  溫馨提示:在用勾股定理時,當斜邊沒有確定時,應進行分類討論.

  例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數(shù),則c=.

  錯解:由勾股定理得c=剖析:此題并沒有告訴你⊿ABC為直角三角形

八年級數(shù)學教案 篇4

  教學目標

  知識與技能

  用二元一次方程組解決有趣場景中的數(shù)字問 題和行程問題,歸納用方程(組)解決實際問題的一般步驟.

  過程與方法

  1.通過設置問題串,讓學生體會分析復雜問題的思考方法.

  2.讓學生進一步經歷和體驗列方程組解決實際問題的過程,體會方程組是刻畫現(xiàn)實世界 的有效數(shù)學模型.

  情感態(tài)度與價值觀

  在學習過程中讓學生體驗把復雜問題化為簡單問題的策略,體驗成功感,同時培養(yǎng)學生克服困難的意志和勇氣, 樹立自信心,并鼓勵學生合作 交流,培養(yǎng)學生的團隊精神.

  教學重點

  1.初步體會列方程組解決實際問題的步驟.

  2.學會用圖表 分析較復雜的數(shù)量關系問題。

  教學難點

  將實際問題轉化 成二元一次方程組的數(shù)學模型;會用圖表分析數(shù) 量關系。

  教學準備:

  教具:教材,課件,電腦(視頻播放器)

  學具:教材,練習本

  教學過程

  第一環(huán)節(jié):復習提問(5分鐘,學生口答)

  內容:填空:

  (1)一個兩位數(shù),個位數(shù)字是 ,十位數(shù)字是 ,則這個兩位數(shù)用代數(shù)式表示為 ;若交換個位和十位上的數(shù)字得到一個新的兩位數(shù),用代數(shù)式表示為 .

  (2)一個兩位數(shù),個位上的數(shù)為 ,十位上的數(shù)為 ,如果在它們之間添上一個0,就得到一個三位數(shù),這個三位數(shù)用代數(shù)式可以表示為 .

  (3)有兩個兩位數(shù) 和 ,如果將 放在 的左邊,就得到一個四位數(shù),那么這個四位數(shù)用代數(shù)式表示為 ;如果將 放在 的右邊,將得到一個新的四位數(shù),那么這個四位數(shù)用代數(shù)式可表示為 .

  第二環(huán)節(jié):情境引入(10分鐘,學生動腦思考,全班交流)

  內容:小明爸爸騎著摩托車帶著小明在公路上勻速行駛,下圖是小明每隔1小時看到的里程情況.你能 確定小明在12:00時看到的里程碑上的數(shù)嗎?

  第三環(huán)節(jié):合作學習(10分鐘,小組討論,找等量關系,解決 問題)

  內容:例1

  兩個兩位數(shù)的'和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個四位數(shù).已知前一個四位數(shù)比后一個四位數(shù)大2178,求這兩個兩位數(shù).

  學生先獨立思考例1,在此基礎上,教師根據(jù)學生思考情況組織交流與討論.

  第四環(huán)節(jié):鞏固練習(10分鐘,學生嘗試獨立解決問題,全班交流)

  內容:練習

  1.一個兩位數(shù),減去它的各位數(shù)字之和的3倍,結果是23;這個兩位數(shù)除以它的各位數(shù)字 之和,商是5,余數(shù)是1.這個兩位數(shù)是多少?

  2.一個兩位數(shù)是另一個兩位數(shù)的3倍,如果把這個兩位數(shù)放在另一個兩位數(shù)的左 邊與放在右邊所得的數(shù)之和為8484.求這個兩位數(shù).

  第五環(huán)節(jié):課堂小結(5分鐘,教師引導學生總結一般步驟)

  內容:

  1.教師提問:本節(jié)課我們學習了那些內容,對這些內容你有什么體會和想法?請與同伴交流.

  2.師生互相交流總結出列方程(組)解決實際問題的一般步驟.

  第 六環(huán)節(jié):布置作業(yè)

  內容:習題7.6

  A組(優(yōu)等生) 2,3,4

  B組(中等生)2、3

  C組(后三分之一生)2

八年級數(shù)學教案 篇5

  教學內容和地位:

  眾數(shù)、中位數(shù)是描述一組數(shù)據(jù)的集中趨勢的兩個統(tǒng)計特征量,是幫助學生學會用數(shù)據(jù)說話的基本概念。本節(jié)課的教學內容和現(xiàn)實生活密切相關,是培養(yǎng)學生應用數(shù)學意識和創(chuàng)新能力的最好素材。

  教學重點和難點:

  本節(jié)課的重點是眾數(shù)和中位數(shù)兩概念的形成過程及兩概念的運用。本節(jié)課的難點是對統(tǒng)計數(shù)據(jù)從多角度進行全面地分析。因為利用數(shù)據(jù)進行分析,對剛剛接觸統(tǒng)計的學生來說,他們原有的認知結構中缺乏這方面的知識經驗,所以,我們可以借助生活中的事例,利用豐富多彩的多媒體輔助,幫助學生突破這一知識難點。

  教學目標分析:

  認知目標:

 。1)使學生認知眾數(shù)、中位數(shù)的意義;

 。2)會求一組數(shù)據(jù)的眾數(shù)、中位數(shù)。

  能力目標:

 。1)讓學生接觸并解決一些社會生活中的問題,為學生創(chuàng)新學數(shù)學、用數(shù)學的情境,培養(yǎng)學生的數(shù)學應用意識和創(chuàng)新意識。

 。2)在問題解決的過程中,培養(yǎng)學生的自主學習能力;

 。3)在問題分析的過程中,培養(yǎng)學生的團結協(xié)作精神。

  情感目標:

 。1)通過多媒體網絡課件,提供適當?shù)膯栴}情境,激發(fā)學生的學習熱情,培養(yǎng)學生學習數(shù)學的興趣;

 。2)在合作學習中,學會交流,相互評價,提高學生的合作意識與能力。

  教學輔助:網絡教室、多媒體輔助網絡教學課件、BBS電子公告欄、學習資源庫

  教法與學法:

  根據(jù)本節(jié)課的教學內容,主要采用了討論發(fā)現(xiàn)法。即課堂上,教師(或學生)提出適當?shù)腵問題,通過學生與學生(或教師)之間相互交流,相互學習,相互討論,在問題解決的過程中發(fā)現(xiàn)概念的產生過程,體現(xiàn)“數(shù)學教學是數(shù)學思維活動的過程的教學”。在教學活動中,通過學生的自主學習來體現(xiàn)他們的主體地位,而教師是通過對學生參與學習的啟發(fā)、調整、激勵來體現(xiàn)自己的主導作用。另外,在學生合作學習的同時,始終堅持對學生進行“學疑結合”、“學思結合”、“學用結合”的學法指導,這對學生的主體意識的培養(yǎng)和創(chuàng)新能力的培養(yǎng)都有積極的意義。

八年級數(shù)學教案 篇6

  總課時:7課時 使用人:

  備課時間:第八周 上課時間:第十周

  第4課時:5、2平面直角坐標系(2)

  教學目標

  知識與技能

  1.在給定的直角坐標系下,會根據(jù)坐標描出點的位置;

  2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內容。

  過程與方法

  1.經歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發(fā)展學生的數(shù)形結合思想,培養(yǎng)學生的合作 交流能力;

  2.通過由點確定坐標到根據(jù)坐標描點的轉化過程,進一步培養(yǎng)學生的轉化意識。

  情感態(tài)度與價值觀

  通過生動有趣的教學活動,發(fā)展學生的合情推理能力和豐富的情感、態(tài)度,提高學生學習數(shù)學的興趣。

  教學重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

  教學難點:在已知的.直角坐標系下找點、連線、觀察,確定圖形的大致形狀。

  教學過程

  第一環(huán)節(jié) 感 受生活中的情境,導入新課(10分鐘,學生自己繪圖找點)

  在上節(jié)課中我們學習了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關系,坐標軸上點的坐標有什么特點。

  練習:指出下列 各點以及所在象限或坐標軸:

  A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學生作答)

  由點找坐標是已知點在直角坐標 系中的位置,根據(jù)這點在方格紙上對應的x軸、y軸上的數(shù)字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節(jié)課的內容。

  第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)

  1.請同學們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。

  (-9,3),(-9,0),(-3,0),( -3,3)

  ( 學生操作完畢后)

  2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內的點用線段依次連接起來。

  (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

  (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

  (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

  (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

  觀察所得的圖形,你覺得它像什么?

  分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題。看哪個小組做得最快?

  (出示學生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

  這個圖形像一棟房子旁邊還有一棵大樹。

  3.做一做

  (出示投影)

  在書上已建立的直角坐標系畫,要求每位同學獨立完成。

  (學生描點、畫圖)

  (拿出一位做對的學生的作品投影)

  你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

  (像貓臉)

  第三環(huán)節(jié) 學有所用.(10分鐘,先獨立完成,后小組討論)

  (補充)1.在直角坐標系中描出下列各點,并將各組內的點用線段順次連接起來。

  (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

  (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

  (3)(2,0)

  觀察所得的圖形,你覺得它像什么?(像移動的菱形)

  2.在直角坐標系中,設法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

  先獨立完成,然后小組討論是否正確。

  第四環(huán)節(jié) 感悟與收獲(5分鐘,學生總結,全班交流)

  本節(jié)課在復習上節(jié)課的基礎上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內容。

  在例題和練習中,我們畫出了不少美麗的圖形,自己設計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。

  第五環(huán)節(jié) 布置作業(yè)

  習題5、4

  A組(優(yōu)等生)1、2、3

  B組(中等生)1、2

  C組(后三分之一生)1、2

八年級數(shù)學教案 篇7

  分式方程

  教學目標

  1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.

  2.經歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉化思想人體,培養(yǎng)學生的應用意識。

  3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數(shù)學的應用價值.

  教學重點:

  將實際問題中的等量 關系用分式方程表示

  教學難點:

  找實際問題中的等量關系

  教學過程:

  情境導入:

  有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產量。你能找出這一問題中的所有等量關系嗎?(分組交流)

  如果設第一塊試驗田 每公頃的產量為 kg,那么第二塊試驗田每公頃的產量是________kg。

  根據(jù)題意,可得方程___________________

  二、講授新課

  從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的`一半。求該客車由高速公路從 甲地到乙地所需的時間。

  這 一問題中有哪些等量關系?

  如果設客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

  根據(jù)題意,可得方程_ _____________________。

  學生分組探討、交流,列出方程.

  三.做一做:

  為了幫助遭受自然災害的地區(qū)重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?

  四.議一議:

  上面所得到的方程有什么共同特點?

  分母中含有未知數(shù)的方程叫做分式方程

  分式方程與整式方程有什么區(qū)別?

  五、 隨堂練習

  (1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

  (2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

  (3)根據(jù)分式方程 編一道應用題,然后同組交流,看誰編得好

  六、學 習小結

  本節(jié)課你學到了哪些知識?有什么感想?

  七.作業(yè)布置

【八年級數(shù)學教案】相關文章:

八年級的數(shù)學教案12-14

八年級數(shù)學教案06-18

八年級的數(shù)學教案15篇12-14

【薦】八年級數(shù)學教案12-03

【熱】八年級數(shù)學教案12-07

八年級上冊人教版數(shù)學教案02-27

人教版八年級數(shù)學教案11-04

初中八年級數(shù)學教案11-03

八年級上冊數(shù)學教案11-09

八年級數(shù)學教案【薦】12-06