- 八年級(jí)數(shù)學(xué)教案 推薦度:
- 相關(guān)推薦
精選八年級(jí)數(shù)學(xué)教案錦集9篇
作為一位杰出的老師,往往需要進(jìn)行教案編寫(xiě)工作,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。那么什么樣的教案才是好的呢?以下是小編為大家整理的八年級(jí)數(shù)學(xué)教案9篇,歡迎大家分享。
八年級(jí)數(shù)學(xué)教案 篇1
一、教學(xué)目標(biāo)
1.理解一個(gè)數(shù)平方根和算術(shù)平方根的意義;
2.理解根號(hào)的意義,會(huì)用根號(hào)表示一個(gè)數(shù)的平方根和算術(shù)平方根;
3.通過(guò)本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;
4.通過(guò)學(xué)習(xí)乘方和開(kāi)方運(yùn)算是互為逆運(yùn)算,體驗(yàn)各事物間的對(duì)立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):平方根和算術(shù)平方根的概念及求法。
教學(xué)難點(diǎn):平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學(xué)方法
講練結(jié)合
四、教學(xué)手段
幻燈片
五、教學(xué)過(guò)程
(一)提問(wèn)
1、已知一正方形面積為50平方米,那么它的邊長(zhǎng)應(yīng)為多少?
2、已知一個(gè)數(shù)的平方等于1000,那么這個(gè)數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長(zhǎng)應(yīng)為多少?
這些問(wèn)題的共同特點(diǎn)是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問(wèn)題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個(gè)小練習(xí):填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學(xué)生在完成此練習(xí)時(shí),最容易出現(xiàn)的錯(cuò)誤是丟掉負(fù)數(shù)解,在教學(xué)時(shí)應(yīng)注意糾正。
由練習(xí)引出平方根的概念。
。ǘ┢椒礁拍
如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(二次方根)。
用數(shù)學(xué)語(yǔ)言表達(dá)即為:若x2=a,則x叫做a的平方根。
由練習(xí)知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
。 )2=—4
學(xué)生思考后,得到結(jié)論此題無(wú)答案。反問(wèn)學(xué)生為什么?因?yàn)檎龜?shù)、0、負(fù)數(shù)的平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒(méi)有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。
(三)平方根性質(zhì)
1.一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù)。
2.0有一個(gè)平方根,它是0本身。
3.負(fù)數(shù)沒(méi)有平方根。
。ㄋ模╅_(kāi)平方
求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開(kāi)平方的運(yùn)算。
由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見(jiàn)平方運(yùn)算與開(kāi)平方運(yùn)算互為逆運(yùn)算。根據(jù)這種關(guān)系,我們可以通過(guò)平方運(yùn)算來(lái)求一個(gè)數(shù)的平方根。與其他運(yùn)算法則不同之處在于只能對(duì)非負(fù)數(shù)進(jìn)行運(yùn)算,而且正數(shù)的運(yùn)算結(jié)果是兩個(gè)。
。ㄎ澹┢椒礁.表示方法
一個(gè)正數(shù)a的正的平方根,用符號(hào)“ ”表示,a叫做被開(kāi)方數(shù),2叫做根指數(shù),正數(shù)a的負(fù)的平方根用符號(hào)“— ”表示,a的平方根合起來(lái)記作 ,其中 讀作“二次根號(hào)”, 讀作“二次根號(hào)下a”。根指數(shù)為2時(shí),通常將這個(gè)2省略不寫(xiě),所以正數(shù)a的平方根也可記作“ ”讀作“正、負(fù)根號(hào)a”。
練習(xí):1.用正確的符號(hào)表示下列各數(shù)的平方根:
①26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
、247的平方根是
、0。2的平方根是
④3的平方根是
、 的平方根是
由學(xué)生說(shuō)出上式的讀法。
例1。下列各數(shù)的平方根:
。1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
(2)
的平方根是 ,即
。3)
的平方根是 ,即
。4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個(gè)正數(shù)的平方根有兩個(gè)。
六、總結(jié)
本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細(xì)閱讀教科書(shū),鞏固所學(xué)知識(shí)。
七、作業(yè)
教材P。127練習(xí)1、2、3、4。
八、板書(shū)設(shè)計(jì)
平方根
(一)概念 (四)表示方法 例1
。ǘ┬再|(zhì)
。ㄈ╅_(kāi)平方
探究活動(dòng)
求平方根近似值的一種方法
求一個(gè)正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
八年級(jí)數(shù)學(xué)教案 篇2
一、創(chuàng)設(shè)情境
1.一次函數(shù)的圖象是什么,如何簡(jiǎn)便地畫(huà)出一次函數(shù)的圖象?
。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線,畫(huà)一次函數(shù)圖象時(shí),取兩點(diǎn)即可畫(huà)出函數(shù)的圖象).
2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過(guò)哪一點(diǎn)的直線?
。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經(jīng)過(guò)原點(diǎn)(0,0)的一條直線).
3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?
4.在平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象.我們畫(huà)一次函數(shù)時(shí),所選取的兩個(gè)點(diǎn)有什么特征,通過(guò)觀察圖象,你發(fā)現(xiàn)這兩個(gè)點(diǎn)在坐標(biāo)系的什么地方?
二、探究歸納
1.在畫(huà)函數(shù)的圖象時(shí),通過(guò)列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個(gè)點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn).
2.求直線y=-2x-3與x軸和y軸的交點(diǎn),并畫(huà)出這條直線.
分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.
解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時(shí),x=-1.5,點(diǎn)(-1.5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時(shí),y=-3,點(diǎn)(0,-3)就是直線與y軸的交點(diǎn).
過(guò)點(diǎn)(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.
所以一次函數(shù)y=kx+b,當(dāng)x=0時(shí),y=b;當(dāng)y=0時(shí),.所以直線y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.
三、實(shí)踐應(yīng)用
例1若直線y=-kx+b與直線y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線的`表達(dá)式.
分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.
解因?yàn)橹本y=-kx+b與直線y=-x平行,所以k=-1,又因?yàn)橹本與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.
例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.
分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?
八年級(jí)數(shù)學(xué)教案 篇3
一、教學(xué)目標(biāo):
1、知識(shí)目標(biāo):能熟練掌握簡(jiǎn)單圖形的移動(dòng)規(guī)律,能按要求作出簡(jiǎn)單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;
2、能力目標(biāo):
、,在實(shí)踐操作過(guò)程中,逐步探索圖形之間的平移關(guān)系;
、冢瑢(duì)組合圖形要找到一個(gè)或者幾個(gè)“基本圖案”,并能通過(guò)對(duì)“基本圖案”的.平移,復(fù)制所求的圖形;
3、情感目標(biāo):經(jīng)歷對(duì)圖形進(jìn)行觀察、分析、欣賞和動(dòng)手操作、畫(huà)圖等過(guò)程,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí)。
二、重點(diǎn)與難點(diǎn):
重點(diǎn):圖形連續(xù)變化的特點(diǎn);
難點(diǎn):圖形的劃分。
三、教學(xué)方法:
講練結(jié)合。使用多媒體課件輔助教學(xué)。
四、教具準(zhǔn)備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學(xué)設(shè)計(jì):
創(chuàng)設(shè)情景,探究新知:
(演示課件):教材上小狗的圖案。提問(wèn):
(1)這個(gè)圖案有什么特點(diǎn)?
(2)它可以通過(guò)什么“基本圖案”,經(jīng)過(guò)怎樣的平移而形成?
(3)在平移過(guò)程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對(duì)每種答案都要肯定。
看磁性黑板,展示教材64頁(yè)圖3-9,提問(wèn):左圖是一個(gè)正六邊形,它經(jīng)過(guò)怎樣的平移能得到右圖?誰(shuí)到黑板做做看?
小組討論,派代表到臺(tái)上給大家講解。
氣氛要熱烈,充分調(diào)動(dòng)學(xué)生的積極性,發(fā)掘他們的想象力。
暢所欲言,互相補(bǔ)充。
課堂小結(jié):
在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。
課堂練習(xí):
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對(duì)于每種答案,教師都要給予充分的肯定。
六、教學(xué)反思:
本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識(shí)較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過(guò)程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。
八年級(jí)數(shù)學(xué)教案 篇4
教學(xué)建議
1、平行線等分線段定理
定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。
注意事項(xiàng):定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。
定理的作用:可以用來(lái)證明同一直線上的線段相等;可以等分線段。
2、平行線等分線段定理的推論
推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。
推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊。
記憶方法:“中點(diǎn)”+“平行”得“中點(diǎn)”。
推論的用途:(1)平分已知線段;(2)證明線段的倍分。
重難點(diǎn)分析
本節(jié)的重點(diǎn)是平行線等分線段定理。因?yàn)樗粌H是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。
本節(jié)的難點(diǎn)也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認(rèn)識(shí)和理解上有一定的難度,在加上平行線等分線段定理的兩個(gè)推論以及各種變式,學(xué)生難免會(huì)有應(yīng)接不暇的感覺(jué),往往會(huì)有感覺(jué)新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。
教法建議
平行線等分線段定理的引入
生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個(gè)角度考慮:
①?gòu)纳顚?shí)例引入,如刻度尺、作業(yè)本、柵欄、等等;
②可用問(wèn)題式引入,開(kāi)始時(shí)設(shè)計(jì)一系列與平行線等分線段定理概念相關(guān)的問(wèn)題由學(xué)生進(jìn)行思考、研究,然后給出平行線等分線段定理和推論。
教學(xué)設(shè)計(jì)示例
一、教學(xué)目標(biāo)
1、使學(xué)生掌握平行線等分線段定理及推論。
2、能夠利用平行線等分線段定理任意等分一條已知線段,進(jìn)一步培養(yǎng)學(xué)生的作圖能力。
3、通過(guò)定理的變式圖形,進(jìn)一步提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
4、通過(guò)本節(jié)學(xué)習(xí),體會(huì)圖形語(yǔ)言和符號(hào)語(yǔ)言的和諧美
二、教法設(shè)計(jì)
學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析
三、重點(diǎn)、難點(diǎn)
1、教學(xué)重點(diǎn):平行線等分線段定理
2、教學(xué)難點(diǎn):平行線等分線段定理
四、課時(shí)安排
l課時(shí)
五、教具學(xué)具
計(jì)算機(jī)、投影儀、膠片、常用畫(huà)圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師復(fù)習(xí)引入,學(xué)生畫(huà)圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)
七、教學(xué)步驟
【復(fù)習(xí)提問(wèn)】
1、什么叫平行線?平行線有什么性質(zhì)。
2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?
【引入新課】
由學(xué)生動(dòng)手做一實(shí)驗(yàn):每個(gè)同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的.),然后在橫格紙上畫(huà)一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時(shí)在橫格紙上再任畫(huà)一條與橫線相交的直線 ,測(cè)量它被相鄰橫線截得的線段是否也相等?
。ㄒ龑(dǎo)學(xué)生把做實(shí)驗(yàn)的條件和得到的結(jié)論寫(xiě)成一個(gè)命題,教師總結(jié),由此得到平行線等分線段定理)
平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。
注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點(diǎn)必須使學(xué)生明確。
下面我們以三條平行線為例來(lái)證明這個(gè)定理(由學(xué)生口述已知,求證)。
已知:如圖,直線 , 。
求證: 。
分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過(guò)全等三角形性質(zhì),即可得到要證的結(jié)論。
。ㄒ龑(dǎo)學(xué)生找出另一種證法)
分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識(shí)即可證得 。
證明:過(guò) 點(diǎn)作 分別交 、 于點(diǎn) 、 ,得 和 ,如圖。
∴
∵ ,
∴
又∵ , ,
∴
∴
為使學(xué)生對(duì)定理加深理解和掌握,把知識(shí)學(xué)活,可讓學(xué)生認(rèn)識(shí)幾種定理的變式圖形,如圖(用計(jì)算機(jī)動(dòng)態(tài)演示)。
引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。
推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰。
再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。
推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。
注意:推論1和推論2也都是很重要的定理,在今后的論證和計(jì)算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。
接下來(lái)講如何利用平行線等分線段定理來(lái)任意等分一條線段。
例 已知:如圖,線段 。
求作:線段 的五等分點(diǎn)。
作法:①作射線 。
、谠谏渚 上以任意長(zhǎng)順次截取 。
、圻B結(jié) 。
、苓^(guò)點(diǎn) 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點(diǎn) 、 、 、 。
、 、 、 就是所求的五等分點(diǎn)。
。ㄕf(shuō)明略,由學(xué)生口述即可)
【總結(jié)、擴(kuò)展】
小結(jié):
。╨)平行線等分線段定理及推論。
。2)定理的證明只取三條平行線,是在較簡(jiǎn)單的情況下證明的,對(duì)于多于三條的平行線的情況,也可用同樣方法證明。
。3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。
(4)應(yīng)用定理任意等分一條線段。
八、布置作業(yè)
教材P188中A組2、9
九、板書(shū)設(shè)計(jì)
十、隨堂練習(xí)
教材P182中1、2
八年級(jí)數(shù)學(xué)教案 篇5
教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識(shí)技能
探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).
數(shù)學(xué)思考
能夠運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問(wèn)題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析問(wèn)題能力和計(jì)算能力.
解決問(wèn)題
通過(guò)添加輔助線,把梯形的問(wèn)題轉(zhuǎn)化成平行四邊形或三角形問(wèn)題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想.
情感態(tài)度
在應(yīng)用等腰梯形的性質(zhì)的過(guò)程養(yǎng)成獨(dú)立思考的習(xí)慣, 在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn).
重點(diǎn)
等腰梯形的性質(zhì)及其應(yīng)用.
難點(diǎn)
解決梯形問(wèn)題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線),及梯形有關(guān)知識(shí)的應(yīng)用.
教學(xué)流程安排
活動(dòng)流程圖
活動(dòng)的內(nèi)容和目的
活動(dòng)1想一想
活動(dòng)2說(shuō)一說(shuō)
活動(dòng)3畫(huà)一畫(huà)
活動(dòng)4做—做
活動(dòng)5練一練
活動(dòng)6理一理
觀察梯形圖片,引入本節(jié)課的學(xué)習(xí)內(nèi)容.
了解梯形定義、各部分名稱及分類.
通過(guò)畫(huà)圖活動(dòng),初步發(fā)現(xiàn)梯形與三角形的轉(zhuǎn)化關(guān)系.
探究得到等腰梯形的性質(zhì).
通過(guò)解決具體問(wèn)題,尋找解決梯形問(wèn)題的方法.
通過(guò)整理回顧,鞏固知識(shí)、提高能力、滲透思想.
教學(xué)過(guò)程設(shè)計(jì)
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
[活動(dòng)1]
觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點(diǎn)?
演示圖片,學(xué)生欣賞.
結(jié)合圖片,教師引導(dǎo)學(xué)生注意這些圖片的共同特征:一組對(duì)邊平行而另一組對(duì)邊不平行.
由現(xiàn)實(shí)中實(shí)際問(wèn)題入手,設(shè)置問(wèn)題情境,引出本課主題.通過(guò)學(xué)生觀察圖片和歸納圖形的特點(diǎn),培養(yǎng)學(xué)生的觀察、概括能力.
[活動(dòng)2]
梯形定義 一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形.
學(xué)生根據(jù)梯形概念畫(huà)出圖形,教師可以進(jìn)一步引導(dǎo)學(xué)生類比梯形與平行四邊形的區(qū)別和聯(lián)系.
通過(guò)類比,培養(yǎng)學(xué)生歸納、總結(jié)的能力.
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
一些基本概念
。1)(如圖):底、腰、高.
。2)等腰梯形:兩腰相等的梯形叫做等腰梯形.
(3)直角梯形:有一個(gè)角是直角的梯形叫做直角梯形.
學(xué)生在小學(xué)已經(jīng)對(duì)梯形有一定的感性認(rèn)識(shí),因此教師讓學(xué)生自己介紹(1)中的基本概念,在聆聽(tīng)學(xué)生發(fā)言后, 教師可以強(qiáng)調(diào):①梯形與四邊形的關(guān)系;
②上、下底的概念是由底的長(zhǎng)短來(lái)定義的,而并不是指位置來(lái)說(shuō)的.
熟悉圖形,明確概念,為探究圖形性質(zhì)做準(zhǔn)備.
[活動(dòng)3]
畫(huà)一畫(huà)
在下列所給圖中的每個(gè)三角形中畫(huà)一條線段,
。1)怎樣畫(huà)才能得到一個(gè)梯形?
。2)在哪些三角形中,能夠得到一個(gè)等腰梯形?
在學(xué)生獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流.
教師參與小組活動(dòng),指導(dǎo)、傾聽(tīng)學(xué)生交流.針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其正確作圖.
本次活動(dòng)教師應(yīng)重點(diǎn)關(guān)注:
。1)學(xué)生在活動(dòng)過(guò)程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.
。2)學(xué)生能否將等腰三角形轉(zhuǎn)化為等腰梯形.
。3)學(xué)生能否主動(dòng)參與探究活動(dòng),在討論中發(fā)表自己的見(jiàn)解,傾聽(tīng)他人的意見(jiàn),對(duì)不同的觀點(diǎn)進(jìn)行質(zhì)疑,從中獲益.
等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動(dòng)3中設(shè)計(jì)了第(2)題,在推導(dǎo)等腰梯形性質(zhì)或需要添加輔助線時(shí),可以借助等腰三角形來(lái)研究.尤其是根據(jù)等腰三角形是軸對(duì)稱圖形,可得到等腰梯形是軸對(duì)稱圖形這條性質(zhì),為活動(dòng)4種開(kāi)展探究奠定了基礎(chǔ).
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
[活動(dòng)4]
做—做
探索等腰梯形的性質(zhì)(引入用軸對(duì)稱解決問(wèn)題的思想).
在一張方格紙上作一個(gè)等腰梯形,連接兩條對(duì)角線.
。1)這個(gè)圖形是軸對(duì)稱圖形嗎?對(duì)稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學(xué)生畫(huà)圖并通過(guò)觀察猜想;
。2)這個(gè)等腰梯形的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?
學(xué)生按照實(shí)驗(yàn)步驟,獨(dú)立完成畫(huà)圖過(guò)程,觀察圖形,思考教師提出的問(wèn)題,猜想、驗(yàn)證、歸納結(jié)論.
針對(duì)不同認(rèn)識(shí)水平的學(xué)生,教師指導(dǎo)學(xué)生活動(dòng).
師生共同歸納:
①等腰梯形是軸對(duì)稱圖形,上下底的中點(diǎn)連線是對(duì)稱軸.
、诘妊菪蝺裳嗟龋
、鄣妊菪瓮坏咨系膬蓚(gè)角相等.
、艿妊菪蔚膬蓷l對(duì)角線相等.
教學(xué)中要注意引導(dǎo)學(xué)生證明等腰梯形的`性質(zhì),尤其在證明“等腰梯形同一底上的兩個(gè)角相等”這條性質(zhì)時(shí),“平移腰”和“作高”這兩種常見(jiàn)的輔助線,在教學(xué)中頭一次出現(xiàn),可以借此機(jī)會(huì),給學(xué)生介紹這兩種輔助線的添加方法.
[活動(dòng)5]
練—練
例1 (教材P118的例1)略.
例2 如圖,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的長(zhǎng).
師生共同分析,尋找解決問(wèn)題的方法和策略.
例1是等腰梯形性質(zhì)的直接運(yùn)用,請(qǐng)學(xué)生分析、解答,教師聆聽(tīng),同時(shí)注意指導(dǎo)學(xué)生,在證明△EAD是等腰三角形時(shí),要用到梯形的定義“上下底互相平行(AD∥BC)”這一點(diǎn).
分析:設(shè)法把已知中所給的條件都移到一個(gè)三角形中,便可以解決問(wèn)題.
其方法是:平移一腰,過(guò)點(diǎn)A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通過(guò)題目的練習(xí)與講解應(yīng)讓學(xué)生知道:解決梯形問(wèn)題的基本思想和方法就是通過(guò)添加適當(dāng)?shù)妮o助線,把梯形問(wèn)題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問(wèn)題來(lái)解決.在教學(xué)時(shí)應(yīng)讓學(xué)生注意它們的作用,掌握這些輔助線的使用對(duì)于學(xué)好梯形內(nèi)容很有幫助.
問(wèn)題與情景
師生行為
設(shè)計(jì)意圖
例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求證:BE=CD.
分析:要證BE=CD,需添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過(guò)點(diǎn)D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導(dǎo)出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
證明(略)
例2與例3這里給出的輔助線均是“平移一腰”,老師們?cè)诮虒W(xué)或練習(xí)中可以根據(jù)學(xué)生的實(shí)際情況,再引導(dǎo)、補(bǔ)充其他輔助線的添加方法,讓學(xué)生多了解、多見(jiàn)識(shí).
[活動(dòng)6]
1.小結(jié)
2.布置作業(yè)
。1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長(zhǎng)和面積.
。2)已知:如圖,
梯形ABCD中,CD//AB,,.
求證:AD=AB—DC.
。3)已知,如圖,
梯形ABCD中,AD∥BC,E是AB的中點(diǎn),DE⊥CE,求證:AD+BC=DC.(延長(zhǎng)DE交CB延長(zhǎng)線于點(diǎn)F,由全等可得結(jié)論)
師生歸納總結(jié):
解決梯形問(wèn)題常用的方法:
。1)“平移腰”:把梯形分成一個(gè)平行四邊形和一個(gè)三角形(圖1);
。2)“作高”:使兩腰在兩個(gè)直角三角形中(圖2);
(3)“延腰”:構(gòu)造具有公共角的兩個(gè)等腰三角形(圖3);
。4)“平移對(duì)角線”:使兩條對(duì)角線在同一個(gè)三角形中(圖4);
。5)“等積變形”,連結(jié)梯形上底一端點(diǎn)和另一腰中點(diǎn),并延長(zhǎng)與下底延長(zhǎng)線交于一點(diǎn),構(gòu)成三角形(圖5).
盡量多地讓學(xué)生參與發(fā)言是一個(gè)交流的過(guò)程.
梳理本節(jié)課應(yīng)用過(guò)的輔助線添加方法,既可以鍛煉學(xué)生思維,又可以留給學(xué)生繼續(xù)探究的空間.
學(xué)生通過(guò)獨(dú)立思考,完成課后作業(yè),便于發(fā)現(xiàn)問(wèn)題,及時(shí)查漏補(bǔ)缺.
八年級(jí)數(shù)學(xué)教案 篇6
教學(xué)目標(biāo):
1. 掌握三角形內(nèi)角和定理及其推論;
2. 弄清三角形按角的分類, 會(huì)按角的大小對(duì)三角形進(jìn)行分類;
3.通過(guò)對(duì)三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問(wèn)題。
4.通過(guò)三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)
5. 通過(guò)對(duì)定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。
教學(xué)重點(diǎn):
三角形內(nèi)角和定理及其推論。
教學(xué)難點(diǎn):
三角形內(nèi)角和定理的證明
教學(xué)用具:
直尺、微機(jī)
教學(xué)方法:
互動(dòng)式,談話法
教學(xué)過(guò)程:
1、創(chuàng)設(shè)情境,自然引入
把問(wèn)題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。
問(wèn)題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問(wèn)題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?
問(wèn)題2 你能用幾何推理來(lái)論證得到的關(guān)系嗎?
對(duì)于問(wèn)題1絕大多數(shù)學(xué)生都能回答出來(lái)(小學(xué)學(xué)過(guò)的),問(wèn)題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線,這是同學(xué)們第一次接觸的新知識(shí)―――“輔助線 ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個(gè)重要內(nèi)容(板書(shū)課題)
新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺(jué)本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。
2、設(shè)問(wèn)質(zhì)疑,探究嘗試
(1)求證:三角形三個(gè)內(nèi)角的和等于
讓學(xué)生剪一個(gè)三角形,并把它的三個(gè)內(nèi)角分別剪下來(lái),再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫(huà)顯示具體情景。然后,圍繞問(wèn)題設(shè)計(jì)以下幾個(gè)問(wèn)題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。
問(wèn)題1 觀察:三個(gè)內(nèi)角拼成了一個(gè)
什么角?問(wèn)題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?
(把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)
問(wèn)題3 由圖中AB與CD的`關(guān)系,啟發(fā)我們畫(huà)一條什么樣的線,作為解決問(wèn)題的橋梁?
其中問(wèn)題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對(duì)于問(wèn)題3學(xué)生經(jīng)過(guò)思考會(huì)畫(huà)出此線的。這里教師要重點(diǎn)講解“輔助線”的有關(guān)知識(shí)。比如:為什么要畫(huà)這條線?畫(huà)這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問(wèn)題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問(wèn)題的目的。
(2)通過(guò)類比“三角形按邊分類”,三角形按角怎樣分類呢?
學(xué)生回答后,電腦顯示圖表。
(3)三角形中三個(gè)內(nèi)角之和為定值
,那么對(duì)三角形的其它角還有哪些特殊的關(guān)系呢?問(wèn)題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?
問(wèn)題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?
問(wèn)題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?
其中問(wèn)題1學(xué)生很容易得出,提出問(wèn)題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過(guò)分析討論,得出結(jié)論并書(shū)寫(xiě)證明過(guò)程。
這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書(shū)寫(xiě)格式,加強(qiáng)學(xué)生書(shū)寫(xiě)能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。
3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論
引導(dǎo)學(xué)生分析并嚴(yán)格書(shū)寫(xiě)解題過(guò)程
八年級(jí)數(shù)學(xué)教案 篇7
一、學(xué)習(xí)目標(biāo):
1、會(huì)推導(dǎo)兩數(shù)差的平方公式,會(huì)用式子表示及用文字語(yǔ)言敘述;
2、會(huì)運(yùn)用兩數(shù)差的平方公式進(jìn)行計(jì)算。
二、學(xué)習(xí)過(guò)程:
請(qǐng)同學(xué)們快速閱讀課本第27—28頁(yè)的內(nèi)容,并完成下面的練習(xí)題:
(一)探索
1、計(jì)算: (a - b) =
方法一: 方法二:
方法三:
2、兩數(shù)差的平方用式子表示為_(kāi)________________________;
用文字語(yǔ)言敘述為_(kāi)__________________________ 。
3、兩數(shù)差的平方公式結(jié)構(gòu)特征是什么?
(二)現(xiàn)學(xué)現(xiàn)用
利用兩數(shù)差的'平方公式計(jì)算:
1、(3 - a) 2、 (2a -1) 3、(3y-x)
4、(2x – 4y) 5、( 3a - )
。ㄈ┖献鞴リP(guān)
靈活運(yùn)用兩數(shù)差的平方公式計(jì)算:
1、(999) 2、( a – b – c )
3、(a + 1) -(a-1)
(四)達(dá)標(biāo)訓(xùn)練
1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )
A、a -2ab + 4b B、a -4b
C、a +4b D、 a - 4ab +4b
2、填空:
(1)9x + + 16y = (4y - 3x )
(2) ( ) = m - 8m + 16
2、計(jì)算:
( a - b) ( x -2y )
3、有一邊長(zhǎng)為a米的正方形空地,現(xiàn)準(zhǔn)備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計(jì)算出噴泉水池的面積嗎?
(四)提升
1、本節(jié)課你學(xué)到了什么?
2、已知a – b = 1,a + b = 25,求ab 的值
八年級(jí)數(shù)學(xué)教案 篇8
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂(lè)趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡(jiǎn)單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問(wèn)題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的'性質(zhì)。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰梯形性質(zhì)的探索;
難點(diǎn):梯形中輔助線的添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:?jiǎn)l(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過(guò)程:
。ㄒ唬⿲(dǎo)入
1、出示圖片,說(shuō)出每輛汽車車窗形狀(投影)
2、板書(shū)課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對(duì)角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長(zhǎng)線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對(duì)角線,圖中有哪幾對(duì)全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線相等。
【探究性質(zhì)三】
問(wèn)題一:延長(zhǎng)等腰梯形的兩腰,哪些三角形是軸對(duì)稱圖形?為什么?對(duì)稱軸呢?(學(xué)生操作、作答)
問(wèn)題二:等腰梯是否軸對(duì)稱圖形?為什么?對(duì)稱軸是什么?(重點(diǎn)討論)
等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問(wèn)題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線、對(duì)稱性等角度總結(jié))、解題方法(化梯形問(wèn)題為三角形及平行四邊形問(wèn)題)、梯形中輔助線的添加方法。
八年級(jí)數(shù)學(xué)教案 篇9
一、課堂引入
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質(zhì)?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
4.事例引入:小華想要做一個(gè)矩形像框送給媽媽做生日禮物,于是找來(lái)兩根長(zhǎng)度相等的短木條和兩根長(zhǎng)度相等的長(zhǎng)木條制作,你有什么辦法可以檢測(cè)他做的是矩形像框嗎?看看誰(shuí)的方法可行?
通過(guò)討論得到矩形的判定方法.
矩形判定方法1:對(duì)角錢(qián)相等的平行四邊形是矩形.
矩形判定方法2:有三個(gè)角是直角的四邊形是矩形.
。ㄖ赋觯号卸ㄒ粋(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了.因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角.)
二、例習(xí)題分析
例1(補(bǔ)充)下列各句判定矩形的說(shuō)法是否正確?為什么?
。1)有一個(gè)角是直角的四邊形是矩形;(×)
。2)有四個(gè)角是直角的四邊形是矩形;(√)
。3)四個(gè)角都相等的四邊形是矩形;(√)
(4)對(duì)角線相等的四邊形是矩形;(×)
(5)對(duì)角線相等且互相垂直的四邊形是矩形;(×)
(6)對(duì)角線互相平分且相等的四邊形是矩形;(√)
(7)對(duì)角線相等,且有一個(gè)角是直角的'四邊形是矩形;(×)
。8)一組鄰邊垂直,一組對(duì)邊平行且相等的四邊形是矩形;(√)
。9)兩組對(duì)邊分別平行,且對(duì)角線相等的四邊形是矩形.(√)
指出:
(l)所給四邊形添加的條件不滿足三個(gè)的肯定不是矩形;
(2)所給四邊形添加的條件是三個(gè)獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.
例2(補(bǔ)充)已知ABCD的對(duì)角線AC、BD相交于點(diǎn)O,△AOB是等邊三角形,AB=4cm,求這個(gè)平行四邊形的面積.
分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對(duì)角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計(jì)算邊長(zhǎng),從而得到面積值.
解:∵ 四邊形ABCD是平行四邊形,
∴AO=AC,BO=BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(對(duì)角線相等的平行四邊形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴BC=(cm).
例3(補(bǔ)充)已知:如圖(1),ABCD的四個(gè)內(nèi)角的平分線分別相交于點(diǎn)E,F(xiàn),G,H.求證:四邊形EFGH是矩形.
分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個(gè)角是直角的四邊形是矩形”來(lái)證明