【精選】八年級(jí)數(shù)學(xué)教案3篇
作為一名默默奉獻(xiàn)的教育工作者,時(shí)常需要編寫(xiě)教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。寫(xiě)教案需要注意哪些格式呢?下面是小編精心整理的八年級(jí)數(shù)學(xué)教案3篇,僅供參考,大家一起來(lái)看看吧。
八年級(jí)數(shù)學(xué)教案 篇1
教學(xué)目的
1. 使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。
2. 熟識(shí)等邊三角形的性質(zhì)及判定.
2.通過(guò)例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長(zhǎng)度的方法。
教學(xué)重點(diǎn)
等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點(diǎn)
簡(jiǎn)潔的邏輯推理。
教學(xué)過(guò)程
一、復(fù)習(xí)鞏固
1.敘述等腰三角形的性質(zhì),它是怎么得到的?
等腰三角形的兩個(gè)底角相等,也可以簡(jiǎn)稱等邊對(duì)等角。把等腰三角形對(duì)折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn) C重合,線段BD與CD也重合,所以C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡(jiǎn)稱三線合一。由于AD為等腰三角形的對(duì)稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。
2.若等腰三角形的兩邊長(zhǎng)為3和4,則其周長(zhǎng)為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質(zhì)呢?
1.請(qǐng)同學(xué)們畫(huà)一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),并提出猜想。
2.你能否用已知的知識(shí),通過(guò)推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對(duì)等角的性質(zhì)得到B=C,又由B+C=180,從而推出B=C=60。
3.上面的條件和結(jié)論如何敘述?
等邊三角形的各角都相等,并且每一個(gè)角都等于60。
等邊三角形是軸對(duì)稱圖形嗎?如果是,有幾條對(duì)稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),B=30,求1和ADC的度數(shù)。
分析:由AB=AC,D為BC的中點(diǎn),可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。
問(wèn)題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?
問(wèn)題2:求1是否還有其它方法?
三、練習(xí)鞏固
1.判斷下列命題,對(duì)的'打,錯(cuò)的打。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個(gè)角是60的等腰三角形,其它兩個(gè)內(nèi)角也為60( )
2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數(shù)。
四、小結(jié)
由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60。三線合一性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個(gè)結(jié)論成立的條件。
五、作業(yè)
1.課本P127─7,9
2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,
EOD的度數(shù)。
(一)課本P127─1、3、4、8題.
八年級(jí)數(shù)學(xué)教案 篇2
一、教學(xué)目標(biāo)
1.使學(xué)生理解并掌握分式的概念,了解有理式的概念;
2.使學(xué)生能夠求出分式有意義的條件;
3.通過(guò)類比分?jǐn)?shù)研究分式的教學(xué),培養(yǎng)學(xué)生運(yùn)用類比轉(zhuǎn)化的思想方法解決問(wèn)題的能力;
4.通過(guò)類比方法的教學(xué),培養(yǎng)學(xué)生對(duì)事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點(diǎn)的再認(rèn)識(shí).
二、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn)和難點(diǎn) 明確分式的`分母不為零.
2.疑點(diǎn)及解決辦法 通過(guò)類比分?jǐn)?shù)的意義,加強(qiáng)對(duì)分式意義的理解.
三、教學(xué)過(guò)程
【新課引入】
前面所研究的因式分解問(wèn)題是把整式分解成若干個(gè)因式的積的問(wèn)題,但若有如下問(wèn)題:某同學(xué)分鐘做了60個(gè)仰臥起坐,每分鐘做多少個(gè)?可表示為,問(wèn),這是不是整式?請(qǐng)一位同學(xué)給它試命名,并說(shuō)一說(shuō)怎樣想到的?(學(xué)生有過(guò)分?jǐn)?shù)的經(jīng)驗(yàn),可猜想到分式)
【新課】
1.分式的定義
(1)由學(xué)生分組討論分式的定義,對(duì)于“兩個(gè)整式相除叫做分式”等錯(cuò)誤,由學(xué)生舉反例一一加以糾正,得到結(jié)論:
用、表示兩個(gè)整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.
(2)由學(xué)生舉幾個(gè)分式的例子.
(3)學(xué)生小結(jié)分式的概念中應(yīng)注意的問(wèn)題.
、俜帜钢泻凶帜.
、谌缤?jǐn)?shù)一樣,分式的分母不能為零.
(4)問(wèn):何時(shí)分式的值為零?[以(2)中學(xué)生舉出的分式為例進(jìn)行討論]
2.有理式的分類
請(qǐng)學(xué)生類比有理數(shù)的分類為有理式分類:
例1 當(dāng)取何值時(shí),下列分式有意義?
(1);
解:由分母得.
∴當(dāng)時(shí),原分式有意義.
(2);
解:由分母得.
∴當(dāng)時(shí),原分式有意義.
(3);
解:∵恒成立,
∴取一切實(shí)數(shù)時(shí),原分式都有意義.
(4).
解:由分母得.
∴當(dāng)且時(shí),原分式有意義.
思考:若把題目要求改為:“當(dāng)取何值時(shí)下列分式無(wú)意義?”該怎樣做?
例2 當(dāng)取何值時(shí),下列分式的值為零?
(1);
解:由分子得.
而當(dāng)時(shí),分母.
∴當(dāng)時(shí),原分式值為零.
小結(jié):若使分式的值為零,需滿足兩個(gè)條件:①分子值等于零;②分母值不等于零.
(2);
解:由分子得.
而當(dāng)時(shí),分母,分式無(wú)意義.
當(dāng)時(shí),分母.
∴當(dāng)時(shí),原分式值為零.
(3);
解:由分子得.
而當(dāng)時(shí),分母.
當(dāng)時(shí),分母.
∴當(dāng)或時(shí),原分式值都為零.
(4).
解:由分子得.
而當(dāng)時(shí),,分式無(wú)意義.
∴沒(méi)有使原分式的值為零的的值,即原分式值不可能為零.
(四)總結(jié)、擴(kuò)展
1.分式與分?jǐn)?shù)的區(qū)別.
2.分式何時(shí)有意義?
3.分式何時(shí)值為零?
(五)隨堂練習(xí)
1.填空題:
(1)當(dāng)時(shí),分式的值為零
(2)當(dāng)時(shí),分式的值為零
(3)當(dāng)時(shí),分式的值為零
2.教材P55中1、2、3.
八、布置作業(yè)
教材P56中A組3、4;B組(1)、(2)、(3).
九、板書(shū)設(shè)計(jì)
課題 例1
1.定義例2
2.有理式分類
八年級(jí)數(shù)學(xué)教案 篇3
一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。
1.平移
2.平移的性質(zhì):⑴經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等;⑵對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。
3.簡(jiǎn)單的平移作圖
、俅_定個(gè)圖形平移后的位置的條件:
⑴需要原圖形的位置;⑵需要平移的方向;⑶需要平移的距離或一個(gè)對(duì)應(yīng)點(diǎn)的位置。
、谧髌揭坪蟮膱D形的方法:
、耪页鲫P(guān)鍵點(diǎn);⑵作出這些點(diǎn)平移后的對(duì)應(yīng)點(diǎn);⑶將所作的對(duì)應(yīng)點(diǎn)按原來(lái)方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的.角稱為旋轉(zhuǎn)角。
1.旋轉(zhuǎn)
2.旋轉(zhuǎn)的性質(zhì)
、判D(zhuǎn)變化前后,對(duì)應(yīng)線段,對(duì)應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
、菩D(zhuǎn)過(guò)程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。
、侨我庖粚(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
、刃D(zhuǎn)前后的兩個(gè)圖形全等。
3.簡(jiǎn)單的旋轉(zhuǎn)作圖
、乓阎瓐D,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。
、埔阎瓐D,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)線段,求作旋轉(zhuǎn)后的圖形。
⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
、俅_定組合圖案中的“基本圖案”
②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
、厶剿髟搱D案的形成過(guò)程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對(duì)稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;
⑸旋轉(zhuǎn)變換與軸對(duì)稱變換的組合;⑹軸對(duì)稱變換與平移變換的組合。
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)人教版數(shù)學(xué)教案02-27
八年級(jí)下冊(cè)數(shù)學(xué)教案01-01